The logarithmic delay of KPP fronts in a periodic medium
Journal of the European Mathematical Society, Tome 18 (2016) no. 3, pp. 465-505
Voir la notice de l'article provenant de la source EMS Press
We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between the position of an initially compactly supported solution and that of a traveling wave grows logarithmically in time.
Classification :
35-XX
Keywords: Reaction-diffusion equations, periodic media, pulsating traveling fronts, Cauchy problem, asymptotic behavior, logarithmic shift
Keywords: Reaction-diffusion equations, periodic media, pulsating traveling fronts, Cauchy problem, asymptotic behavior, logarithmic shift
@article{JEMS_2016_18_3_a0,
author = {Fran\c{c}ois Hamel and James Nolen and Jean-Michel Roquejoffre and Lenya Ryzhik},
title = {The logarithmic delay of {KPP} fronts in a periodic medium},
journal = {Journal of the European Mathematical Society},
pages = {465--505},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2016},
doi = {10.4171/jems/595},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/595/}
}
TY - JOUR AU - François Hamel AU - James Nolen AU - Jean-Michel Roquejoffre AU - Lenya Ryzhik TI - The logarithmic delay of KPP fronts in a periodic medium JO - Journal of the European Mathematical Society PY - 2016 SP - 465 EP - 505 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/595/ DO - 10.4171/jems/595 ID - JEMS_2016_18_3_a0 ER -
%0 Journal Article %A François Hamel %A James Nolen %A Jean-Michel Roquejoffre %A Lenya Ryzhik %T The logarithmic delay of KPP fronts in a periodic medium %J Journal of the European Mathematical Society %D 2016 %P 465-505 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/595/ %R 10.4171/jems/595 %F JEMS_2016_18_3_a0
François Hamel; James Nolen; Jean-Michel Roquejoffre; Lenya Ryzhik. The logarithmic delay of KPP fronts in a periodic medium. Journal of the European Mathematical Society, Tome 18 (2016) no. 3, pp. 465-505. doi: 10.4171/jems/595
Cité par Sources :