The KSBA compactification for the moduli space of degree two $K$3 pairs
Journal of the European Mathematical Society, Tome 18 (2016) no. 2, pp. 225-279
Cet article a éte moissonné depuis la source EMS Press
Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and Alexeev have constructed a geometric compactification for the moduli space of surfaces of log general type. In this paper, we discuss one of the simplest examples that fits into this framework: the case of pairs (X,H) consisting of a degree two K3 surface X and an ample divisor H. Specifically, we construct and describe explicitly a geometric compactification P2 for the moduli of degree two K3 pairs. This compactification has a natural forgetful map to the Baily–Borel compactification of the moduli space F2 of degree two K3 surfaces. Using this map and the modular meaning of P2, we obtain a better understanding of the geometry of the standard compactifications of F2.
Classification :
14-XX
Keywords: K3 surfaces, moduli space of K3 surfaces, KSBA
Keywords: K3 surfaces, moduli space of K3 surfaces, KSBA
@article{JEMS_2016_18_2_a0,
author = {Radu Laza},
title = {The {KSBA} compactification for the moduli space of degree two $K$3 pairs},
journal = {Journal of the European Mathematical Society},
pages = {225--279},
year = {2016},
volume = {18},
number = {2},
doi = {10.4171/jems/589},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/589/}
}
TY - JOUR AU - Radu Laza TI - The KSBA compactification for the moduli space of degree two $K$3 pairs JO - Journal of the European Mathematical Society PY - 2016 SP - 225 EP - 279 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/589/ DO - 10.4171/jems/589 ID - JEMS_2016_18_2_a0 ER -
Radu Laza. The KSBA compactification for the moduli space of degree two $K$3 pairs. Journal of the European Mathematical Society, Tome 18 (2016) no. 2, pp. 225-279. doi: 10.4171/jems/589
Cité par Sources :