Real zeros of holomorphic Hecke cusp forms and sieving short intervals
Journal of the European Mathematical Society, Tome 18 (2016) no. 1, pp. 123-146
Voir la notice de l'article provenant de la source EMS Press
We study so-called real zeros of holomorphic Hecke cusp forms, that is, zeros on three geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak, who were the first to study this problem, showed the existence of many such zeros if many short intervals contain numbers whose prime factors all belong to a certain subset of the primes.We prove new results concerning this sieving problem which leads to improved lower bounds for the number of real zeros.
Classification :
11-XX
Keywords: Cusp forms, real zeros, sieving short intervals
Keywords: Cusp forms, real zeros, sieving short intervals
@article{JEMS_2016_18_1_a2,
author = {Kaisa Matom\"aki},
title = {Real zeros of holomorphic {Hecke} cusp forms and sieving short intervals},
journal = {Journal of the European Mathematical Society},
pages = {123--146},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2016},
doi = {10.4171/jems/585},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/585/}
}
TY - JOUR AU - Kaisa Matomäki TI - Real zeros of holomorphic Hecke cusp forms and sieving short intervals JO - Journal of the European Mathematical Society PY - 2016 SP - 123 EP - 146 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/585/ DO - 10.4171/jems/585 ID - JEMS_2016_18_1_a2 ER -
Kaisa Matomäki. Real zeros of holomorphic Hecke cusp forms and sieving short intervals. Journal of the European Mathematical Society, Tome 18 (2016) no. 1, pp. 123-146. doi: 10.4171/jems/585
Cité par Sources :