Resolutions of moduli spaces and homological stability
Journal of the European Mathematical Society, Tome 18 (2016) no. 1, pp. 1-81 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We describe partial semi-simplicial resolutions of moduli spaces of surfaces with tangential structure. This allows us to prove a homological stability theorem for these moduli spaces, which often improves the known stability ranges and gives explicit stability ranges in many new cases. In each of these cases the stable homology can be identified using the methods of Galatius, Madsen, Tillmann and Weiss.
DOI : 10.4171/jems/583
Classification : 55-XX, 20-XX, 57-XX
Keywords: Homological stability, mapping class groups, moduli spaces
@article{JEMS_2016_18_1_a0,
     author = {Oscar Randal-Williams},
     title = {Resolutions of moduli spaces and homological stability},
     journal = {Journal of the European Mathematical Society},
     pages = {1--81},
     year = {2016},
     volume = {18},
     number = {1},
     doi = {10.4171/jems/583},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/583/}
}
TY  - JOUR
AU  - Oscar Randal-Williams
TI  - Resolutions of moduli spaces and homological stability
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1
EP  - 81
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/583/
DO  - 10.4171/jems/583
ID  - JEMS_2016_18_1_a0
ER  - 
%0 Journal Article
%A Oscar Randal-Williams
%T Resolutions of moduli spaces and homological stability
%J Journal of the European Mathematical Society
%D 2016
%P 1-81
%V 18
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/583/
%R 10.4171/jems/583
%F JEMS_2016_18_1_a0
Oscar Randal-Williams. Resolutions of moduli spaces and homological stability. Journal of the European Mathematical Society, Tome 18 (2016) no. 1, pp. 1-81. doi: 10.4171/jems/583

Cité par Sources :