How to produce a Ricci flow via Cheeger–Gromoll exhaustion
Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3153-3194
Cet article a éte moissonné depuis la source EMS Press
We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger–Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open manifold. Furthermore, we find an optimal volume growth condition which guarantees long time existence, and give an analysis of the long time behavior of the Ricci flow. We also construct an explicit example of an immortal non-negatively curved Ricci flow with unbounded curvature for all time.
Classification :
53-XX, 35-XX, 58-XX
Keywords: Ricci flow, short time existence, Cheeger–Gromoll exhaustion, complex sectional curvature
Keywords: Ricci flow, short time existence, Cheeger–Gromoll exhaustion, complex sectional curvature
@article{JEMS_2015_17_12_a5,
author = {Esther Cabezas-Rivas and Burkhard Wilking},
title = {How to produce a {Ricci} flow via {Cheeger{\textendash}Gromoll} exhaustion},
journal = {Journal of the European Mathematical Society},
pages = {3153--3194},
year = {2015},
volume = {17},
number = {12},
doi = {10.4171/jems/582},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/582/}
}
TY - JOUR AU - Esther Cabezas-Rivas AU - Burkhard Wilking TI - How to produce a Ricci flow via Cheeger–Gromoll exhaustion JO - Journal of the European Mathematical Society PY - 2015 SP - 3153 EP - 3194 VL - 17 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/582/ DO - 10.4171/jems/582 ID - JEMS_2015_17_12_a5 ER -
%0 Journal Article %A Esther Cabezas-Rivas %A Burkhard Wilking %T How to produce a Ricci flow via Cheeger–Gromoll exhaustion %J Journal of the European Mathematical Society %D 2015 %P 3153-3194 %V 17 %N 12 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/582/ %R 10.4171/jems/582 %F JEMS_2015_17_12_a5
Esther Cabezas-Rivas; Burkhard Wilking. How to produce a Ricci flow via Cheeger–Gromoll exhaustion. Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3153-3194. doi: 10.4171/jems/582
Cité par Sources :