Self-similar Lie algebras
Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3113-3151.

Voir la notice de l'article provenant de la source EMS Press

We give a general definition of branched, self-similar Lie algebras, and show that important examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grigorchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar.We derive the same results for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov
DOI : 10.4171/jems/581
Classification : 20-XX, 16-XX, 17-XX
Keywords: Groups acting on trees, Lie algebras, wreath products
@article{JEMS_2015_17_12_a4,
     author = {Laurent Bartholdi},
     title = {Self-similar {Lie} algebras},
     journal = {Journal of the European Mathematical Society},
     pages = {3113--3151},
     publisher = {mathdoc},
     volume = {17},
     number = {12},
     year = {2015},
     doi = {10.4171/jems/581},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/581/}
}
TY  - JOUR
AU  - Laurent Bartholdi
TI  - Self-similar Lie algebras
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 3113
EP  - 3151
VL  - 17
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/581/
DO  - 10.4171/jems/581
ID  - JEMS_2015_17_12_a4
ER  - 
%0 Journal Article
%A Laurent Bartholdi
%T Self-similar Lie algebras
%J Journal of the European Mathematical Society
%D 2015
%P 3113-3151
%V 17
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/581/
%R 10.4171/jems/581
%F JEMS_2015_17_12_a4
Laurent Bartholdi. Self-similar Lie algebras. Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3113-3151. doi : 10.4171/jems/581. http://geodesic.mathdoc.fr/articles/10.4171/jems/581/

Cité par Sources :