Two-dimensional curvature functionals with superquadratic growth
Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3081-3111
Cet article a éte moissonné depuis la source EMS Press
For two-dimensional, immersed closed surfaces f:Σ→Rn, we study the curvature functionals Ep(f) and Wp(f) with integrands (1+∣A∣2)p/2 and (1+∣H∣2)p/2, respectively. Here A is the second fundamental form, H is the mean curvature and we assume p>2. Our main result asserts that W2,p critical points are smooth in both cases. We also prove a compactness theorem for Wp-bounded sequences. In the case of Ep this is just Langer's theorem [16], while for Wp we have to impose a bound for the Willmore energy strictly below 8π as an additional condition. Finally, we establish versions of the Palais–Smale condition for both functionals.
Classification :
53-XX, 35-XX
Keywords: Curvature functionals, Palais–Smale condition
Keywords: Curvature functionals, Palais–Smale condition
@article{JEMS_2015_17_12_a3,
author = {Ernst Kuwert and Tobias Lamm and Yuxiang Li},
title = {Two-dimensional curvature functionals with superquadratic growth},
journal = {Journal of the European Mathematical Society},
pages = {3081--3111},
year = {2015},
volume = {17},
number = {12},
doi = {10.4171/jems/580},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/580/}
}
TY - JOUR AU - Ernst Kuwert AU - Tobias Lamm AU - Yuxiang Li TI - Two-dimensional curvature functionals with superquadratic growth JO - Journal of the European Mathematical Society PY - 2015 SP - 3081 EP - 3111 VL - 17 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/580/ DO - 10.4171/jems/580 ID - JEMS_2015_17_12_a3 ER -
%0 Journal Article %A Ernst Kuwert %A Tobias Lamm %A Yuxiang Li %T Two-dimensional curvature functionals with superquadratic growth %J Journal of the European Mathematical Society %D 2015 %P 3081-3111 %V 17 %N 12 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/580/ %R 10.4171/jems/580 %F JEMS_2015_17_12_a3
Ernst Kuwert; Tobias Lamm; Yuxiang Li. Two-dimensional curvature functionals with superquadratic growth. Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3081-3111. doi: 10.4171/jems/580
Cité par Sources :