The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian
Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 375-388
Cet article a éte moissonné depuis la source EMS Press
We prove an Ambrosetti-Prodi-type result for the periodic solutions of equation (∣u′∣p−2u′))′+f(u)u′+g(x,u)=t, when f is arbitrary and g(x,u)→+∞ or g(x,u)→−∞ when ∣u∣→∞. The proof uses upper and lower solutions and Leray-Schauder degree.
Classification :
35-XX, 00-XX
Keywords: Ambrosetti-Prodi problem, periodic solutions, upper and lower solutions, topological degree
Keywords: Ambrosetti-Prodi problem, periodic solutions, upper and lower solutions, topological degree
@article{JEMS_2006_8_2_a16,
author = {Jean Mawhin},
title = {The periodic {Ambrosetti-Prodi} problem for nonlinear perturbations of the {p-Laplacian}},
journal = {Journal of the European Mathematical Society},
pages = {375--388},
year = {2006},
volume = {8},
number = {2},
doi = {10.4171/jems/58},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/58/}
}
TY - JOUR AU - Jean Mawhin TI - The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian JO - Journal of the European Mathematical Society PY - 2006 SP - 375 EP - 388 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/58/ DO - 10.4171/jems/58 ID - JEMS_2006_8_2_a16 ER -
Jean Mawhin. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 375-388. doi: 10.4171/jems/58
Cité par Sources :