The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian
Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 375-388.

Voir la notice de l'article provenant de la source EMS Press

We prove an Ambrosetti-Prodi-type result for the periodic solutions of equation (∣u′∣p−2u′))′+f(u)u′+g(x,u)=t, when f is arbitrary and g(x,u)→+∞ or g(x,u)→−∞ when ∣u∣→∞. The proof uses upper and lower solutions and Leray-Schauder degree.
DOI : 10.4171/jems/58
Classification : 35-XX, 00-XX
Keywords: Ambrosetti-Prodi problem, periodic solutions, upper and lower solutions, topological degree
@article{JEMS_2006_8_2_a16,
     author = {Jean Mawhin},
     title = {The periodic {Ambrosetti-Prodi} problem for nonlinear perturbations of the {p-Laplacian}},
     journal = {Journal of the European Mathematical Society},
     pages = {375--388},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4171/jems/58},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/58/}
}
TY  - JOUR
AU  - Jean Mawhin
TI  - The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 375
EP  - 388
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/58/
DO  - 10.4171/jems/58
ID  - JEMS_2006_8_2_a16
ER  - 
%0 Journal Article
%A Jean Mawhin
%T The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian
%J Journal of the European Mathematical Society
%D 2006
%P 375-388
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/58/
%R 10.4171/jems/58
%F JEMS_2006_8_2_a16
Jean Mawhin. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 375-388. doi : 10.4171/jems/58. http://geodesic.mathdoc.fr/articles/10.4171/jems/58/

Cité par Sources :