Tempered reductive homogeneous spaces
Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3015-3036.

Voir la notice de l'article provenant de la source EMS Press

Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geometrically the best even integer p for which the representation of G in L2(G/H) is almost Lp. As an application, we give a criterion which detects whether this representation is tempered.
DOI : 10.4171/jems/578
Classification : 22-XX, 43-XX
Keywords: Lie groups, homogeneous spaces, tempered representations, matrix coefficients, symmetric spaces
@article{JEMS_2015_17_12_a1,
     author = {Yves Benoist and Toshiyuki Kobayashi},
     title = {Tempered reductive homogeneous spaces},
     journal = {Journal of the European Mathematical Society},
     pages = {3015--3036},
     publisher = {mathdoc},
     volume = {17},
     number = {12},
     year = {2015},
     doi = {10.4171/jems/578},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/578/}
}
TY  - JOUR
AU  - Yves Benoist
AU  - Toshiyuki Kobayashi
TI  - Tempered reductive homogeneous spaces
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 3015
EP  - 3036
VL  - 17
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/578/
DO  - 10.4171/jems/578
ID  - JEMS_2015_17_12_a1
ER  - 
%0 Journal Article
%A Yves Benoist
%A Toshiyuki Kobayashi
%T Tempered reductive homogeneous spaces
%J Journal of the European Mathematical Society
%D 2015
%P 3015-3036
%V 17
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/578/
%R 10.4171/jems/578
%F JEMS_2015_17_12_a1
Yves Benoist; Toshiyuki Kobayashi. Tempered reductive homogeneous spaces. Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3015-3036. doi : 10.4171/jems/578. http://geodesic.mathdoc.fr/articles/10.4171/jems/578/

Cité par Sources :