Tempered reductive homogeneous spaces
Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3015-3036
Cet article a éte moissonné depuis la source EMS Press
Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geometrically the best even integer p for which the representation of G in L2(G/H) is almost Lp. As an application, we give a criterion which detects whether this representation is tempered.
Classification :
22-XX, 43-XX
Keywords: Lie groups, homogeneous spaces, tempered representations, matrix coefficients, symmetric spaces
Keywords: Lie groups, homogeneous spaces, tempered representations, matrix coefficients, symmetric spaces
@article{JEMS_2015_17_12_a1,
author = {Yves Benoist and Toshiyuki Kobayashi},
title = {Tempered reductive homogeneous spaces},
journal = {Journal of the European Mathematical Society},
pages = {3015--3036},
year = {2015},
volume = {17},
number = {12},
doi = {10.4171/jems/578},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/578/}
}
TY - JOUR AU - Yves Benoist AU - Toshiyuki Kobayashi TI - Tempered reductive homogeneous spaces JO - Journal of the European Mathematical Society PY - 2015 SP - 3015 EP - 3036 VL - 17 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/578/ DO - 10.4171/jems/578 ID - JEMS_2015_17_12_a1 ER -
Yves Benoist; Toshiyuki Kobayashi. Tempered reductive homogeneous spaces. Journal of the European Mathematical Society, Tome 17 (2015) no. 12, pp. 3015-3036. doi: 10.4171/jems/578
Cité par Sources :