Regularity of stable solutions of $p$-Laplace equations through geometric Sobolev type inequalities
Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2949-2975.

Voir la notice de l'article provenant de la source EMS Press

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of –Δp​u=g(u) in a smooth bounded domain Ω⊂Rn. In particular, we obtain new Lr and W1,r bounds for the extremal solution u⋆ when the domain is strictly convex. More precisely, we prove that u⋆∈L∞(Ω) if n≤p+2 and u⋆∈Ln−p−2np​(Ω)∩W01,p​(Ω) if n>p+2.
DOI : 10.4171/jems/576
Classification : 35-XX, 00-XX
Keywords: Geometric inequalities, mean curvature of level sets, Schwarz symmetrization, p-Laplace equations, regularity of stable solutions
@article{JEMS_2015_17_11_a7,
     author = {Daniele Castorina and Manel Sanch\'on},
     title = {Regularity of stable solutions of $p${-Laplace} equations through geometric {Sobolev} type inequalities},
     journal = {Journal of the European Mathematical Society},
     pages = {2949--2975},
     publisher = {mathdoc},
     volume = {17},
     number = {11},
     year = {2015},
     doi = {10.4171/jems/576},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/576/}
}
TY  - JOUR
AU  - Daniele Castorina
AU  - Manel Sanchón
TI  - Regularity of stable solutions of $p$-Laplace equations through geometric Sobolev type inequalities
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2949
EP  - 2975
VL  - 17
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/576/
DO  - 10.4171/jems/576
ID  - JEMS_2015_17_11_a7
ER  - 
%0 Journal Article
%A Daniele Castorina
%A Manel Sanchón
%T Regularity of stable solutions of $p$-Laplace equations through geometric Sobolev type inequalities
%J Journal of the European Mathematical Society
%D 2015
%P 2949-2975
%V 17
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/576/
%R 10.4171/jems/576
%F JEMS_2015_17_11_a7
Daniele Castorina; Manel Sanchón. Regularity of stable solutions of $p$-Laplace equations through geometric Sobolev type inequalities. Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2949-2975. doi : 10.4171/jems/576. http://geodesic.mathdoc.fr/articles/10.4171/jems/576/

Cité par Sources :