Amenable hyperbolic groups
Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2903-2947.

Voir la notice de l'article provenant de la source EMS Press

We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly transitively on the set of ends. As an application, we show that the class of hyperbolic locally compact groups with a cusp-uniform nonuniform lattice is very restricted.
DOI : 10.4171/jems/575
Classification : 20-XX, 05-XX, 22-XX, 43-XX
Keywords: Gromov hyperbolic group, locally compact group, amenable group, contracting automorphisms, compacting automorphisms
@article{JEMS_2015_17_11_a6,
     author = {Pierre-Emmanuel Caprace and Yves de Cornulier and Nicolas Monod and Romain Tessera},
     title = {Amenable hyperbolic groups},
     journal = {Journal of the European Mathematical Society},
     pages = {2903--2947},
     publisher = {mathdoc},
     volume = {17},
     number = {11},
     year = {2015},
     doi = {10.4171/jems/575},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/575/}
}
TY  - JOUR
AU  - Pierre-Emmanuel Caprace
AU  - Yves de Cornulier
AU  - Nicolas Monod
AU  - Romain Tessera
TI  - Amenable hyperbolic groups
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2903
EP  - 2947
VL  - 17
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/575/
DO  - 10.4171/jems/575
ID  - JEMS_2015_17_11_a6
ER  - 
%0 Journal Article
%A Pierre-Emmanuel Caprace
%A Yves de Cornulier
%A Nicolas Monod
%A Romain Tessera
%T Amenable hyperbolic groups
%J Journal of the European Mathematical Society
%D 2015
%P 2903-2947
%V 17
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/575/
%R 10.4171/jems/575
%F JEMS_2015_17_11_a6
Pierre-Emmanuel Caprace; Yves de Cornulier; Nicolas Monod; Romain Tessera. Amenable hyperbolic groups. Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2903-2947. doi : 10.4171/jems/575. http://geodesic.mathdoc.fr/articles/10.4171/jems/575/

Cité par Sources :