High-order phase transitions in the quadratic family
Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2725-2761.

Voir la notice de l'article provenant de la source EMS Press

We give the first example of a transitive quadratic map whose real and complex geometric pressure functions have a high-order phase transition. In fact, we show that this phase transition resembles a Kosterlitz-Thouless singularity: Near the critical parameter the geometric pressure function behaves as x↦exp(–x–2) near x=0, before becoming linear. This quadratic map has a non-recurrent critical point, so it is non-uniformly hyperbolic in a strong sense.
DOI : 10.4171/jems/569
Classification : 37-XX
Keywords: Quadratic family, thermodynamic formalism, phase transition
@article{JEMS_2015_17_11_a0,
     author = {Daniel Coronel and Juan Rivera-Letelier},
     title = {High-order phase transitions in the quadratic family},
     journal = {Journal of the European Mathematical Society},
     pages = {2725--2761},
     publisher = {mathdoc},
     volume = {17},
     number = {11},
     year = {2015},
     doi = {10.4171/jems/569},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/569/}
}
TY  - JOUR
AU  - Daniel Coronel
AU  - Juan Rivera-Letelier
TI  - High-order phase transitions in the quadratic family
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2725
EP  - 2761
VL  - 17
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/569/
DO  - 10.4171/jems/569
ID  - JEMS_2015_17_11_a0
ER  - 
%0 Journal Article
%A Daniel Coronel
%A Juan Rivera-Letelier
%T High-order phase transitions in the quadratic family
%J Journal of the European Mathematical Society
%D 2015
%P 2725-2761
%V 17
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/569/
%R 10.4171/jems/569
%F JEMS_2015_17_11_a0
Daniel Coronel; Juan Rivera-Letelier. High-order phase transitions in the quadratic family. Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2725-2761. doi : 10.4171/jems/569. http://geodesic.mathdoc.fr/articles/10.4171/jems/569/

Cité par Sources :