High-order phase transitions in the quadratic family
Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2725-2761
Cet article a éte moissonné depuis la source EMS Press
We give the first example of a transitive quadratic map whose real and complex geometric pressure functions have a high-order phase transition. In fact, we show that this phase transition resembles a Kosterlitz-Thouless singularity: Near the critical parameter the geometric pressure function behaves as x↦exp(–x–2) near x=0, before becoming linear. This quadratic map has a non-recurrent critical point, so it is non-uniformly hyperbolic in a strong sense.
Classification :
37-XX
Keywords: Quadratic family, thermodynamic formalism, phase transition
Keywords: Quadratic family, thermodynamic formalism, phase transition
@article{JEMS_2015_17_11_a0,
author = {Daniel Coronel and Juan Rivera-Letelier},
title = {High-order phase transitions in the quadratic family},
journal = {Journal of the European Mathematical Society},
pages = {2725--2761},
year = {2015},
volume = {17},
number = {11},
doi = {10.4171/jems/569},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/569/}
}
TY - JOUR AU - Daniel Coronel AU - Juan Rivera-Letelier TI - High-order phase transitions in the quadratic family JO - Journal of the European Mathematical Society PY - 2015 SP - 2725 EP - 2761 VL - 17 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/569/ DO - 10.4171/jems/569 ID - JEMS_2015_17_11_a0 ER -
Daniel Coronel; Juan Rivera-Letelier. High-order phase transitions in the quadratic family. Journal of the European Mathematical Society, Tome 17 (2015) no. 11, pp. 2725-2761. doi: 10.4171/jems/569
Cité par Sources :