Prime numbers along Rudin–Shapiro sequences
Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2595-2642
Cet article a éte moissonné depuis la source EMS Press
For a large class of digital functions f, we estimate the sums ∑n≤xΛ(n)f(n) (and ∑n≤xμ(n)f(n), where Λ denotes the von Mangoldt function (and μ the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.
Classification :
11-XX
Keywords: Rudin–Shapiro sequence, prime numbers, Möbius function, exponential sums
Keywords: Rudin–Shapiro sequence, prime numbers, Möbius function, exponential sums
@article{JEMS_2015_17_10_a5,
author = {Christian Mauduit and Jo\"el Rivat},
title = {Prime numbers along {Rudin{\textendash}Shapiro} sequences},
journal = {Journal of the European Mathematical Society},
pages = {2595--2642},
year = {2015},
volume = {17},
number = {10},
doi = {10.4171/jems/566},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/566/}
}
TY - JOUR AU - Christian Mauduit AU - Joël Rivat TI - Prime numbers along Rudin–Shapiro sequences JO - Journal of the European Mathematical Society PY - 2015 SP - 2595 EP - 2642 VL - 17 IS - 10 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/566/ DO - 10.4171/jems/566 ID - JEMS_2015_17_10_a5 ER -
Christian Mauduit; Joël Rivat. Prime numbers along Rudin–Shapiro sequences. Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2595-2642. doi: 10.4171/jems/566
Cité par Sources :