Prime numbers along Rudin–Shapiro sequences
Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2595-2642.

Voir la notice de l'article provenant de la source EMS Press

For a large class of digital functions f, we estimate the sums ∑n≤x​Λ(n)f(n) (and ∑n≤x​μ(n)f(n), where Λ denotes the von Mangoldt function (and μ the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.
DOI : 10.4171/jems/566
Classification : 11-XX
Keywords: Rudin–Shapiro sequence, prime numbers, Möbius function, exponential sums
@article{JEMS_2015_17_10_a5,
     author = {Christian Mauduit and Jo\"el Rivat},
     title = {Prime numbers along {Rudin{\textendash}Shapiro} sequences},
     journal = {Journal of the European Mathematical Society},
     pages = {2595--2642},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2015},
     doi = {10.4171/jems/566},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/566/}
}
TY  - JOUR
AU  - Christian Mauduit
AU  - Joël Rivat
TI  - Prime numbers along Rudin–Shapiro sequences
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2595
EP  - 2642
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/566/
DO  - 10.4171/jems/566
ID  - JEMS_2015_17_10_a5
ER  - 
%0 Journal Article
%A Christian Mauduit
%A Joël Rivat
%T Prime numbers along Rudin–Shapiro sequences
%J Journal of the European Mathematical Society
%D 2015
%P 2595-2642
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/566/
%R 10.4171/jems/566
%F JEMS_2015_17_10_a5
Christian Mauduit; Joël Rivat. Prime numbers along Rudin–Shapiro sequences. Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2595-2642. doi : 10.4171/jems/566. http://geodesic.mathdoc.fr/articles/10.4171/jems/566/

Cité par Sources :