Soft local times and decoupling of random interlacements
Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2545-2593.

Voir la notice de l'article provenant de la source EMS Press

In this paper we establish a decoupling feature of the random interlacement process Iu⊂Zd at level u, d≥3. Roughly speaking, we show that observations of Iu restricted to two disjoint subsets A1​ and A2​ of Zd are approximately independent, once we add a sprinkling to the process Iu by slightly increasing the parameter u. Our results differ from previous ones in that we allow the mutual distance between the sets A1​ and A2​ to be much smaller than their diameters. We then provide an important application of this decoupling for which such flexibility is crucial. More precisely, we prove that, above a certain critical threshold u∗∗​, the probability of having long paths that avoid Iu is exponentially small, with logarithmic corrections for d=3.
DOI : 10.4171/jems/565
Classification : 60-XX, 82-XX
Keywords: Random interlacements, stochastic domination, soft local time, connectivity decay, smoothening of discrete sets
@article{JEMS_2015_17_10_a4,
     author = {Serguei Popov and Augusto Teixeira},
     title = {Soft local times and decoupling of random interlacements},
     journal = {Journal of the European Mathematical Society},
     pages = {2545--2593},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2015},
     doi = {10.4171/jems/565},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/565/}
}
TY  - JOUR
AU  - Serguei Popov
AU  - Augusto Teixeira
TI  - Soft local times and decoupling of random interlacements
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2545
EP  - 2593
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/565/
DO  - 10.4171/jems/565
ID  - JEMS_2015_17_10_a4
ER  - 
%0 Journal Article
%A Serguei Popov
%A Augusto Teixeira
%T Soft local times and decoupling of random interlacements
%J Journal of the European Mathematical Society
%D 2015
%P 2545-2593
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/565/
%R 10.4171/jems/565
%F JEMS_2015_17_10_a4
Serguei Popov; Augusto Teixeira. Soft local times and decoupling of random interlacements. Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2545-2593. doi : 10.4171/jems/565. http://geodesic.mathdoc.fr/articles/10.4171/jems/565/

Cité par Sources :