On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions
Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2513-2543
Cet article a éte moissonné depuis la source EMS Press
We extend a result of the second author [27, Theorem 1.1] to dimensions d≥3 which relates the size of Lp-norms of eigenfunctions for 22(d+1)/d−1 to the amount of L2-mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an "ε removal lemma" of Tao and Vargas [35]. We also use Hörmander's [20] L2 oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive curvature, the L2-norm of eigenfunctions eλ over unit-length tubes of width λ−1/2 goes to zero. Using our main estimate, we deduce that, in this case, the Lp-norms of eigenfunctions for the above range of exponents is relatively small. As a result, we can slightly improve the known lower bounds for nodal sets in dimensions d≥3 of Colding and Minicozzi [10] in the special case of (variable) nonpositive curvature.
Classification :
58-XX, 35-XX, 42-XX
Keywords: Eigenfunctions, Lp-norms, Kakeya averages
Keywords: Eigenfunctions, Lp-norms, Kakeya averages
@article{JEMS_2015_17_10_a3,
author = {Matthew D. Blair and Christopher D. Sogge},
title = {On {Kakeya{\textendash}Nikodym} averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions},
journal = {Journal of the European Mathematical Society},
pages = {2513--2543},
year = {2015},
volume = {17},
number = {10},
doi = {10.4171/jems/564},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/564/}
}
TY - JOUR AU - Matthew D. Blair AU - Christopher D. Sogge TI - On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions JO - Journal of the European Mathematical Society PY - 2015 SP - 2513 EP - 2543 VL - 17 IS - 10 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/564/ DO - 10.4171/jems/564 ID - JEMS_2015_17_10_a3 ER -
%0 Journal Article %A Matthew D. Blair %A Christopher D. Sogge %T On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions %J Journal of the European Mathematical Society %D 2015 %P 2513-2543 %V 17 %N 10 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/564/ %R 10.4171/jems/564 %F JEMS_2015_17_10_a3
Matthew D. Blair; Christopher D. Sogge. On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions. Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2513-2543. doi: 10.4171/jems/564
Cité par Sources :