On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions
Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2513-2543.

Voir la notice de l'article provenant de la source EMS Press

We extend a result of the second author [27, Theorem 1.1] to dimensions d≥3 which relates the size of Lp-norms of eigenfunctions for 22(d+1)/d−1 to the amount of L2-mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an "ε removal lemma" of Tao and Vargas [35]. We also use Hörmander's [20] L2 oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive curvature, the L2-norm of eigenfunctions eλ​ over unit-length tubes of width λ−1/2 goes to zero. Using our main estimate, we deduce that, in this case, the Lp-norms of eigenfunctions for the above range of exponents is relatively small. As a result, we can slightly improve the known lower bounds for nodal sets in dimensions d≥3 of Colding and Minicozzi [10] in the special case of (variable) nonpositive curvature.
DOI : 10.4171/jems/564
Classification : 58-XX, 35-XX, 42-XX
Keywords: Eigenfunctions, Lp-norms, Kakeya averages
@article{JEMS_2015_17_10_a3,
     author = {Matthew D. Blair and Christopher D. Sogge},
     title = {On {Kakeya{\textendash}Nikodym} averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions},
     journal = {Journal of the European Mathematical Society},
     pages = {2513--2543},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2015},
     doi = {10.4171/jems/564},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/564/}
}
TY  - JOUR
AU  - Matthew D. Blair
AU  - Christopher D. Sogge
TI  - On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2513
EP  - 2543
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/564/
DO  - 10.4171/jems/564
ID  - JEMS_2015_17_10_a3
ER  - 
%0 Journal Article
%A Matthew D. Blair
%A Christopher D. Sogge
%T On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions
%J Journal of the European Mathematical Society
%D 2015
%P 2513-2543
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/564/
%R 10.4171/jems/564
%F JEMS_2015_17_10_a3
Matthew D. Blair; Christopher D. Sogge. On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions. Journal of the European Mathematical Society, Tome 17 (2015) no. 10, pp. 2513-2543. doi : 10.4171/jems/564. http://geodesic.mathdoc.fr/articles/10.4171/jems/564/

Cité par Sources :