Bistable traveling waves for monotone semiflows with applications
Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2243-2288.

Voir la notice de l'article provenant de la source EMS Press

This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.
DOI : 10.4171/jems/556
Classification : 37-XX, 00-XX, 35-XX
Keywords: Monotone semiflows, traveling waves, bistable dynamics, periodic habitat
@article{JEMS_2015_17_9_a5,
     author = {Jian Fang and Xiao-Qiang Zhao},
     title = {Bistable traveling waves for monotone semiflows with applications},
     journal = {Journal of the European Mathematical Society},
     pages = {2243--2288},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2015},
     doi = {10.4171/jems/556},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/556/}
}
TY  - JOUR
AU  - Jian Fang
AU  - Xiao-Qiang Zhao
TI  - Bistable traveling waves for monotone semiflows with applications
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 2243
EP  - 2288
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/556/
DO  - 10.4171/jems/556
ID  - JEMS_2015_17_9_a5
ER  - 
%0 Journal Article
%A Jian Fang
%A Xiao-Qiang Zhao
%T Bistable traveling waves for monotone semiflows with applications
%J Journal of the European Mathematical Society
%D 2015
%P 2243-2288
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/556/
%R 10.4171/jems/556
%F JEMS_2015_17_9_a5
Jian Fang; Xiao-Qiang Zhao. Bistable traveling waves for monotone semiflows with applications. Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2243-2288. doi : 10.4171/jems/556. http://geodesic.mathdoc.fr/articles/10.4171/jems/556/

Cité par Sources :