Flexibility of surface groups in classical simple Lie groups
Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2209-2242
Cet article a éte moissonné depuis la source EMS Press
We show that a surface group of high genus contained in a classical simple Lie group can be deformed to become Zariski dense, unless the Lie group is SU(p,q) (resp. SO∗(2n), n odd) and the surface group is maximal in some S(U(p,p)×U(q−p))⊂SU(p,q) (resp. SO∗(2n−2)×SO(2)⊂SO∗(2n)). This is a converse, for classical groups, to a rigidity result of S. Bradlow, O. García-Prada and P. Gothen.
Classification :
51-XX, 57-XX
Keywords: Algebraic group, symmetric space, rigidity, group cohomology, moduli space
Keywords: Algebraic group, symmetric space, rigidity, group cohomology, moduli space
@article{JEMS_2015_17_9_a4,
author = {Inkang Kim and Pierre Pansu},
title = {Flexibility of surface groups in classical simple {Lie} groups},
journal = {Journal of the European Mathematical Society},
pages = {2209--2242},
year = {2015},
volume = {17},
number = {9},
doi = {10.4171/jems/555},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/555/}
}
TY - JOUR AU - Inkang Kim AU - Pierre Pansu TI - Flexibility of surface groups in classical simple Lie groups JO - Journal of the European Mathematical Society PY - 2015 SP - 2209 EP - 2242 VL - 17 IS - 9 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/555/ DO - 10.4171/jems/555 ID - JEMS_2015_17_9_a4 ER -
Inkang Kim; Pierre Pansu. Flexibility of surface groups in classical simple Lie groups. Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2209-2242. doi: 10.4171/jems/555
Cité par Sources :