A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature
Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2137-2173
Cet article a éte moissonné depuis la source EMS Press
In this paper we consider Riemannian manifolds (Mn,g) of dimension n≥5, with semi-positive Q-curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green's function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q-curvature. Modifying the test function construction of Esposito-Robert, we show that it is possible to choose an initial conformal metric so that the flow has a sequential limit which is smooth and positive, and defines a conformal metric of constant positive Q-curvature.
Classification :
35-XX
Keywords: Q-curvature, Paneitz operator, conformal geometry, non-local flow
Keywords: Q-curvature, Paneitz operator, conformal geometry, non-local flow
@article{JEMS_2015_17_9_a2,
author = {Matthew J. Gursky and Andrea Malchiodi},
title = {A strong maximum principle for the {Paneitz} operator and a non-local flow for the $Q$-curvature},
journal = {Journal of the European Mathematical Society},
pages = {2137--2173},
year = {2015},
volume = {17},
number = {9},
doi = {10.4171/jems/553},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/553/}
}
TY - JOUR AU - Matthew J. Gursky AU - Andrea Malchiodi TI - A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature JO - Journal of the European Mathematical Society PY - 2015 SP - 2137 EP - 2173 VL - 17 IS - 9 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/553/ DO - 10.4171/jems/553 ID - JEMS_2015_17_9_a2 ER -
%0 Journal Article %A Matthew J. Gursky %A Andrea Malchiodi %T A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature %J Journal of the European Mathematical Society %D 2015 %P 2137-2173 %V 17 %N 9 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/553/ %R 10.4171/jems/553 %F JEMS_2015_17_9_a2
Matthew J. Gursky; Andrea Malchiodi. A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature. Journal of the European Mathematical Society, Tome 17 (2015) no. 9, pp. 2137-2173. doi: 10.4171/jems/553
Cité par Sources :