Gap universality of generalized Wigner and $\beta$-ensembles
Journal of the European Mathematical Society, Tome 17 (2015) no. 8, pp. 1927-2036
Cet article a éte moissonné depuis la source EMS Press
We consider generalized Wigner ensembles and general β-ensembles with analytic potentials for any β≥1 . The recent universality results in particular assert that the local averages of consecutive eigenvalue gaps in the bulk of the spectrum are universal in the sense that they coincide with those of the corresponding Gaussian β-ensembles. In this article, we show that local averaging is not necessary for this result, i.e. we prove that the single gap distributions in the bulk are universal. In fact, with an additional step, our result can be extended to any potential C4(R).
Classification :
15-XX, 82-XX
Keywords: β-ensembles, Wigner-Dyson-Gaudin-Mehta universality, gap distribution, log-gas
Keywords: β-ensembles, Wigner-Dyson-Gaudin-Mehta universality, gap distribution, log-gas
@article{JEMS_2015_17_8_a2,
author = {L\'aszl\'o Erd\H{o}s and Horng-Tzer Yau},
title = {Gap universality of generalized {Wigner} and $\beta$-ensembles },
journal = {Journal of the European Mathematical Society},
pages = {1927--2036},
year = {2015},
volume = {17},
number = {8},
doi = {10.4171/jems/548},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/548/}
}
TY - JOUR AU - László Erdős AU - Horng-Tzer Yau TI - Gap universality of generalized Wigner and $\beta$-ensembles JO - Journal of the European Mathematical Society PY - 2015 SP - 1927 EP - 2036 VL - 17 IS - 8 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/548/ DO - 10.4171/jems/548 ID - JEMS_2015_17_8_a2 ER -
László Erdős; Horng-Tzer Yau. Gap universality of generalized Wigner and $\beta$-ensembles. Journal of the European Mathematical Society, Tome 17 (2015) no. 8, pp. 1927-2036. doi: 10.4171/jems/548
Cité par Sources :