An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise
Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1789-1815
Cet article a éte moissonné depuis la source EMS Press
In this paper, we develop a new general approach to the existence and uniqueness theory of infinite dimensional stochastic equations of the form
Classification :
60-XX, 47-XX
Keywords: Maximal monotone operator, stochastic integral, operatorial equations
Keywords: Maximal monotone operator, stochastic integral, operatorial equations
@article{JEMS_2015_17_7_a7,
author = {Viorel Barbu and Michael R\"ockner},
title = {An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise},
journal = {Journal of the European Mathematical Society},
pages = {1789--1815},
year = {2015},
volume = {17},
number = {7},
doi = {10.4171/jems/545},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/545/}
}
TY - JOUR AU - Viorel Barbu AU - Michael Röckner TI - An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise JO - Journal of the European Mathematical Society PY - 2015 SP - 1789 EP - 1815 VL - 17 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/545/ DO - 10.4171/jems/545 ID - JEMS_2015_17_7_a7 ER -
%0 Journal Article %A Viorel Barbu %A Michael Röckner %T An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise %J Journal of the European Mathematical Society %D 2015 %P 1789-1815 %V 17 %N 7 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/545/ %R 10.4171/jems/545 %F JEMS_2015_17_7_a7
Viorel Barbu; Michael Röckner. An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise. Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1789-1815. doi: 10.4171/jems/545
Cité par Sources :