Isometries of quadratic spaces
Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1629-1656.

Voir la notice de l'article provenant de la source EMS Press

Let k be a global field of characteristic not 2, and let f∈k[X] be an irreducible polynomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial f if and only if such an isometry exists over all the completions of k. This gives a partial answer to a question of Milnor.
DOI : 10.4171/jems/541
Classification : 11-XX
Keywords: Quadratic space, isometry, orthogonal group, minimal polynomial
@article{JEMS_2015_17_7_a3,
     author = {Eva Bayer-Fluckiger},
     title = {Isometries of quadratic spaces},
     journal = {Journal of the European Mathematical Society},
     pages = {1629--1656},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2015},
     doi = {10.4171/jems/541},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/541/}
}
TY  - JOUR
AU  - Eva Bayer-Fluckiger
TI  - Isometries of quadratic spaces
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 1629
EP  - 1656
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/541/
DO  - 10.4171/jems/541
ID  - JEMS_2015_17_7_a3
ER  - 
%0 Journal Article
%A Eva Bayer-Fluckiger
%T Isometries of quadratic spaces
%J Journal of the European Mathematical Society
%D 2015
%P 1629-1656
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/541/
%R 10.4171/jems/541
%F JEMS_2015_17_7_a3
Eva Bayer-Fluckiger. Isometries of quadratic spaces. Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1629-1656. doi : 10.4171/jems/541. http://geodesic.mathdoc.fr/articles/10.4171/jems/541/

Cité par Sources :