Isometries of quadratic spaces
Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1629-1656
Cet article a éte moissonné depuis la source EMS Press
Let k be a global field of characteristic not 2, and let f∈k[X] be an irreducible polynomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial f if and only if such an isometry exists over all the completions of k. This gives a partial answer to a question of Milnor.
Classification :
11-XX
Keywords: Quadratic space, isometry, orthogonal group, minimal polynomial
Keywords: Quadratic space, isometry, orthogonal group, minimal polynomial
@article{JEMS_2015_17_7_a3,
author = {Eva Bayer-Fluckiger},
title = {Isometries of quadratic spaces},
journal = {Journal of the European Mathematical Society},
pages = {1629--1656},
year = {2015},
volume = {17},
number = {7},
doi = {10.4171/jems/541},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/541/}
}
Eva Bayer-Fluckiger. Isometries of quadratic spaces. Journal of the European Mathematical Society, Tome 17 (2015) no. 7, pp. 1629-1656. doi: 10.4171/jems/541
Cité par Sources :