On the motion of a curve by its binormal curvature
Journal of the European Mathematical Society, Tome 17 (2015) no. 6, pp. 1487-1515.

Voir la notice de l'article provenant de la source EMS Press

We propose a weak formulation for the binormal curvature flow of curves in R3. This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.
DOI : 10.4171/jems/536
Classification : 53-XX, 76-XX
Keywords: Binormal curvature flow, integral current, oriented varifold
@article{JEMS_2015_17_6_a5,
     author = {Robert L. Jerrard and Didier Smets},
     title = {On the motion of a curve by its binormal curvature},
     journal = {Journal of the European Mathematical Society},
     pages = {1487--1515},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2015},
     doi = {10.4171/jems/536},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/536/}
}
TY  - JOUR
AU  - Robert L. Jerrard
AU  - Didier Smets
TI  - On the motion of a curve by its binormal curvature
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 1487
EP  - 1515
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/536/
DO  - 10.4171/jems/536
ID  - JEMS_2015_17_6_a5
ER  - 
%0 Journal Article
%A Robert L. Jerrard
%A Didier Smets
%T On the motion of a curve by its binormal curvature
%J Journal of the European Mathematical Society
%D 2015
%P 1487-1515
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/536/
%R 10.4171/jems/536
%F JEMS_2015_17_6_a5
Robert L. Jerrard; Didier Smets. On the motion of a curve by its binormal curvature. Journal of the European Mathematical Society, Tome 17 (2015) no. 6, pp. 1487-1515. doi : 10.4171/jems/536. http://geodesic.mathdoc.fr/articles/10.4171/jems/536/

Cité par Sources :