A variational analysis of a gauged nonlinear Schrödinger equation
Journal of the European Mathematical Society, Tome 17 (2015) no. 6, pp. 1463-1486
Cet article a éte moissonné depuis la source EMS Press
This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem:
Classification :
35-XX
Keywords: Gauged Schrödinger equations, Chern-Simons theory, variational methods, concentration compactness
Keywords: Gauged Schrödinger equations, Chern-Simons theory, variational methods, concentration compactness
@article{JEMS_2015_17_6_a4,
author = {Alessio Pomponio and David Ruiz},
title = {A variational analysis of a gauged nonlinear {Schr\"odinger} equation},
journal = {Journal of the European Mathematical Society},
pages = {1463--1486},
year = {2015},
volume = {17},
number = {6},
doi = {10.4171/jems/535},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/535/}
}
TY - JOUR AU - Alessio Pomponio AU - David Ruiz TI - A variational analysis of a gauged nonlinear Schrödinger equation JO - Journal of the European Mathematical Society PY - 2015 SP - 1463 EP - 1486 VL - 17 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/535/ DO - 10.4171/jems/535 ID - JEMS_2015_17_6_a4 ER -
Alessio Pomponio; David Ruiz. A variational analysis of a gauged nonlinear Schrödinger equation. Journal of the European Mathematical Society, Tome 17 (2015) no. 6, pp. 1463-1486. doi: 10.4171/jems/535
Cité par Sources :