Quantitative stability for sumsets in $\mathbb R^n$
Journal of the European Mathematical Society, Tome 17 (2015) no. 5, pp. 1079-1106.

Voir la notice de l'article provenant de la source EMS Press

Given a measurable set A⊂Rn of positive measure, it is not difficult to show that ∣A+A∣=∣2A∣ if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If (∣A+A∣−∣2A∣)/∣A∣ is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of (∣A+A∣−∣2A∣)/∣A∣.
DOI : 10.4171/jems/527
Classification : 49-XX, 34-XX
Keywords: Quantitative stability, sumsets, Freiman’s theorem
@article{JEMS_2015_17_5_a1,
     author = {Alessio Figalli and David Jerison},
     title = {Quantitative stability for sumsets in $\mathbb R^n$},
     journal = {Journal of the European Mathematical Society},
     pages = {1079--1106},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2015},
     doi = {10.4171/jems/527},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/527/}
}
TY  - JOUR
AU  - Alessio Figalli
AU  - David Jerison
TI  - Quantitative stability for sumsets in $\mathbb R^n$
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 1079
EP  - 1106
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/527/
DO  - 10.4171/jems/527
ID  - JEMS_2015_17_5_a1
ER  - 
%0 Journal Article
%A Alessio Figalli
%A David Jerison
%T Quantitative stability for sumsets in $\mathbb R^n$
%J Journal of the European Mathematical Society
%D 2015
%P 1079-1106
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/527/
%R 10.4171/jems/527
%F JEMS_2015_17_5_a1
Alessio Figalli; David Jerison. Quantitative stability for sumsets in $\mathbb R^n$. Journal of the European Mathematical Society, Tome 17 (2015) no. 5, pp. 1079-1106. doi : 10.4171/jems/527. http://geodesic.mathdoc.fr/articles/10.4171/jems/527/

Cité par Sources :