Quantitative stability for sumsets in $\mathbb R^n$
Journal of the European Mathematical Society, Tome 17 (2015) no. 5, pp. 1079-1106
Cet article a éte moissonné depuis la source EMS Press
Given a measurable set A⊂Rn of positive measure, it is not difficult to show that ∣A+A∣=∣2A∣ if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If (∣A+A∣−∣2A∣)/∣A∣ is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of (∣A+A∣−∣2A∣)/∣A∣.
Classification :
49-XX, 34-XX
Keywords: Quantitative stability, sumsets, Freiman’s theorem
Keywords: Quantitative stability, sumsets, Freiman’s theorem
@article{JEMS_2015_17_5_a1,
author = {Alessio Figalli and David Jerison},
title = {Quantitative stability for sumsets in $\mathbb R^n$},
journal = {Journal of the European Mathematical Society},
pages = {1079--1106},
year = {2015},
volume = {17},
number = {5},
doi = {10.4171/jems/527},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/527/}
}
TY - JOUR AU - Alessio Figalli AU - David Jerison TI - Quantitative stability for sumsets in $\mathbb R^n$ JO - Journal of the European Mathematical Society PY - 2015 SP - 1079 EP - 1106 VL - 17 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/527/ DO - 10.4171/jems/527 ID - JEMS_2015_17_5_a1 ER -
Alessio Figalli; David Jerison. Quantitative stability for sumsets in $\mathbb R^n$. Journal of the European Mathematical Society, Tome 17 (2015) no. 5, pp. 1079-1106. doi: 10.4171/jems/527
Cité par Sources :