Calculus of variations with differential forms
Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 1009-1039.

Voir la notice de l'article provenant de la source EMS Press

We study integrals of the form ∫Ω​f(dω), where 1≤k≤n, f:Λk→R is continuous and ω is a (k−1)-form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.
DOI : 10.4171/jems/525
Classification : 49-XX
Keywords: Calculus of variations, differential forms, quasiconvexity, polyconvexity and ext. one convexity
@article{JEMS_2015_17_4_a10,
     author = {Saugata Bandyopadhyay and Bernard Dacorogna and Swarnendu Sil},
     title = {Calculus of variations with differential forms},
     journal = {Journal of the European Mathematical Society},
     pages = {1009--1039},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2015},
     doi = {10.4171/jems/525},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/525/}
}
TY  - JOUR
AU  - Saugata Bandyopadhyay
AU  - Bernard Dacorogna
AU  - Swarnendu Sil
TI  - Calculus of variations with differential forms
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 1009
EP  - 1039
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/525/
DO  - 10.4171/jems/525
ID  - JEMS_2015_17_4_a10
ER  - 
%0 Journal Article
%A Saugata Bandyopadhyay
%A Bernard Dacorogna
%A Swarnendu Sil
%T Calculus of variations with differential forms
%J Journal of the European Mathematical Society
%D 2015
%P 1009-1039
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/525/
%R 10.4171/jems/525
%F JEMS_2015_17_4_a10
Saugata Bandyopadhyay; Bernard Dacorogna; Swarnendu Sil. Calculus of variations with differential forms. Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 1009-1039. doi : 10.4171/jems/525. http://geodesic.mathdoc.fr/articles/10.4171/jems/525/

Cité par Sources :