Counting arithmetic subgroups and subgroup growth of virtually free groups
Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 925-953
Cet article a éte moissonné depuis la source EMS Press
Let K be a p-adic field, and let H=PSL2(K) endowed with the Haar measure determined by giving a maximal compact subgroup measure 1. Let ALH(x) denote the number of conjugacy classes of arithmetic lattices in H with co-volume bounded by x. We show that under the assumption that K does not contain the element ζ+ζ−1, where ζ denotes the p-th root of unity over Qp, we have
Classification :
22-XX, 20-XX
Keywords: Arithmetic subgroups, counting lattices, subgroup growth, virtually free groups
Keywords: Arithmetic subgroups, counting lattices, subgroup growth, virtually free groups
@article{JEMS_2015_17_4_a7,
author = {Amichai Eisenmann},
title = {Counting arithmetic subgroups and subgroup growth of virtually free groups},
journal = {Journal of the European Mathematical Society},
pages = {925--953},
year = {2015},
volume = {17},
number = {4},
doi = {10.4171/jems/522},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/522/}
}
TY - JOUR AU - Amichai Eisenmann TI - Counting arithmetic subgroups and subgroup growth of virtually free groups JO - Journal of the European Mathematical Society PY - 2015 SP - 925 EP - 953 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/522/ DO - 10.4171/jems/522 ID - JEMS_2015_17_4_a7 ER -
Amichai Eisenmann. Counting arithmetic subgroups and subgroup growth of virtually free groups. Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 925-953. doi: 10.4171/jems/522
Cité par Sources :