Witten's Conjecture for many four-manifolds of simple type
Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 899-923
Cet article a éte moissonné depuis la source EMS Press
We prove that Witten's Conjecture [40] on the relationship between the Donaldson and Seiberg-Witten series for a four-manifold of Seiberg-Witten simple type with b1=0 and odd b2+≥3 follows from our SO(3)-monopole cobordism formula [6] when the four-manifold has c12≥χh−3 or is abundant.
Classification :
57-XX, 58-XX
Keywords: Cobordisms, Donaldson invariants, Seiberg-Witten invariants, smooth four-dimensional manifolds, \( \SO(3) \) monopoles, Yang-Mills gauge theory
Keywords: Cobordisms, Donaldson invariants, Seiberg-Witten invariants, smooth four-dimensional manifolds, \( \SO(3) \) monopoles, Yang-Mills gauge theory
@article{JEMS_2015_17_4_a6,
author = {Paul M.N. Feehan and Thomas G. Leness},
title = {Witten's {Conjecture} for many four-manifolds of simple type},
journal = {Journal of the European Mathematical Society},
pages = {899--923},
year = {2015},
volume = {17},
number = {4},
doi = {10.4171/jems/521},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/521/}
}
TY - JOUR AU - Paul M.N. Feehan AU - Thomas G. Leness TI - Witten's Conjecture for many four-manifolds of simple type JO - Journal of the European Mathematical Society PY - 2015 SP - 899 EP - 923 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/521/ DO - 10.4171/jems/521 ID - JEMS_2015_17_4_a6 ER -
Paul M.N. Feehan; Thomas G. Leness. Witten's Conjecture for many four-manifolds of simple type. Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 899-923. doi: 10.4171/jems/521
Cité par Sources :