Matrix coefficients, counting and primes for orbits of geometrically finite groups
Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 837-897
Voir la notice de l'article provenant de la source EMS Press
Let G:=SO(n,1)∘ and Γa geometrically finite Zariski dense subgroup with critical exponent δ bigger than (n−1)/2. Under a spectral gap hypothesis on L2(Γ\G), which is always satisfied when δ>(n−1)/2 for n=2,3 and when δ>n−2 for n≥4, we obtain an effective archimedean counting result for a discrete orbit of Γ in a homogeneous space H\G where H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family {BT⊂H\G} of compact subsets, there exists η>0 such that
Classification :
11-XX, 18-XX, 19-XX, 34-XX
Keywords: Geometrically finite group, matrix coefficients, mixing, sieve, spectral gap, equidistribution
Keywords: Geometrically finite group, matrix coefficients, mixing, sieve, spectral gap, equidistribution
@article{JEMS_2015_17_4_a5,
author = {Amir Mohammadi and Hee Oh},
title = {Matrix coefficients, counting and primes for orbits of geometrically finite groups},
journal = {Journal of the European Mathematical Society},
pages = {837--897},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2015},
doi = {10.4171/jems/520},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/520/}
}
TY - JOUR AU - Amir Mohammadi AU - Hee Oh TI - Matrix coefficients, counting and primes for orbits of geometrically finite groups JO - Journal of the European Mathematical Society PY - 2015 SP - 837 EP - 897 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/520/ DO - 10.4171/jems/520 ID - JEMS_2015_17_4_a5 ER -
%0 Journal Article %A Amir Mohammadi %A Hee Oh %T Matrix coefficients, counting and primes for orbits of geometrically finite groups %J Journal of the European Mathematical Society %D 2015 %P 837-897 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/520/ %R 10.4171/jems/520 %F JEMS_2015_17_4_a5
Amir Mohammadi; Hee Oh. Matrix coefficients, counting and primes for orbits of geometrically finite groups. Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 837-897. doi: 10.4171/jems/520
Cité par Sources :