1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs
Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 755-762.

Voir la notice de l'article provenant de la source EMS Press

We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
DOI : 10.4171/jems/517
Classification : 20-XX, 00-XX
Keywords: Gromov hyperbolic, slim triangle, curve graph, arc graph, unicorn
@article{JEMS_2015_17_4_a2,
     author = {Sebastian Hensel and Piotr Przytycki and Richard C.H. Webb},
     title = {1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs},
     journal = {Journal of the European Mathematical Society},
     pages = {755--762},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2015},
     doi = {10.4171/jems/517},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/517/}
}
TY  - JOUR
AU  - Sebastian Hensel
AU  - Piotr Przytycki
AU  - Richard C.H. Webb
TI  - 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 755
EP  - 762
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/517/
DO  - 10.4171/jems/517
ID  - JEMS_2015_17_4_a2
ER  - 
%0 Journal Article
%A Sebastian Hensel
%A Piotr Przytycki
%A Richard C.H. Webb
%T 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs
%J Journal of the European Mathematical Society
%D 2015
%P 755-762
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/517/
%R 10.4171/jems/517
%F JEMS_2015_17_4_a2
Sebastian Hensel; Piotr Przytycki; Richard C.H. Webb. 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs. Journal of the European Mathematical Society, Tome 17 (2015) no. 4, pp. 755-762. doi : 10.4171/jems/517. http://geodesic.mathdoc.fr/articles/10.4171/jems/517/

Cité par Sources :