De Rham cohomology and homotopy Frobenius manifolds
Journal of the European Mathematical Society, Tome 17 (2015) no. 3, pp. 535-547
Cet article a éte moissonné depuis la source EMS Press
We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.
Classification :
58-XX, 14-XX, 18-XX, 53-XX
Keywords: De Rham cohomology, homotopy Frobenius manifold, Poisson/Jacobi/contact manifold, multicomplex, Batalin–Vilkovisky algebra
Keywords: De Rham cohomology, homotopy Frobenius manifold, Poisson/Jacobi/contact manifold, multicomplex, Batalin–Vilkovisky algebra
@article{JEMS_2015_17_3_a2,
author = {Vladimir Dotsenko and Sergey Shadrin and Bruno Vallette},
title = {De {Rham} cohomology and homotopy {Frobenius} manifolds},
journal = {Journal of the European Mathematical Society},
pages = {535--547},
year = {2015},
volume = {17},
number = {3},
doi = {10.4171/jems/510},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/510/}
}
TY - JOUR AU - Vladimir Dotsenko AU - Sergey Shadrin AU - Bruno Vallette TI - De Rham cohomology and homotopy Frobenius manifolds JO - Journal of the European Mathematical Society PY - 2015 SP - 535 EP - 547 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/510/ DO - 10.4171/jems/510 ID - JEMS_2015_17_3_a2 ER -
%0 Journal Article %A Vladimir Dotsenko %A Sergey Shadrin %A Bruno Vallette %T De Rham cohomology and homotopy Frobenius manifolds %J Journal of the European Mathematical Society %D 2015 %P 535-547 %V 17 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/510/ %R 10.4171/jems/510 %F JEMS_2015_17_3_a2
Vladimir Dotsenko; Sergey Shadrin; Bruno Vallette. De Rham cohomology and homotopy Frobenius manifolds. Journal of the European Mathematical Society, Tome 17 (2015) no. 3, pp. 535-547. doi: 10.4171/jems/510
Cité par Sources :