De Rham cohomology and homotopy Frobenius manifolds
Journal of the European Mathematical Society, Tome 17 (2015) no. 3, pp. 535-547.

Voir la notice de l'article provenant de la source EMS Press

We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.
DOI : 10.4171/jems/510
Classification : 58-XX, 14-XX, 18-XX, 53-XX
Keywords: De Rham cohomology, homotopy Frobenius manifold, Poisson/Jacobi/contact manifold, multicomplex, Batalin–Vilkovisky algebra
@article{JEMS_2015_17_3_a2,
     author = {Vladimir Dotsenko and Sergey Shadrin and Bruno Vallette},
     title = {De {Rham} cohomology and homotopy {Frobenius} manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {535--547},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015},
     doi = {10.4171/jems/510},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/510/}
}
TY  - JOUR
AU  - Vladimir Dotsenko
AU  - Sergey Shadrin
AU  - Bruno Vallette
TI  - De Rham cohomology and homotopy Frobenius manifolds
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 535
EP  - 547
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/510/
DO  - 10.4171/jems/510
ID  - JEMS_2015_17_3_a2
ER  - 
%0 Journal Article
%A Vladimir Dotsenko
%A Sergey Shadrin
%A Bruno Vallette
%T De Rham cohomology and homotopy Frobenius manifolds
%J Journal of the European Mathematical Society
%D 2015
%P 535-547
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/510/
%R 10.4171/jems/510
%F JEMS_2015_17_3_a2
Vladimir Dotsenko; Sergey Shadrin; Bruno Vallette. De Rham cohomology and homotopy Frobenius manifolds. Journal of the European Mathematical Society, Tome 17 (2015) no. 3, pp. 535-547. doi : 10.4171/jems/510. http://geodesic.mathdoc.fr/articles/10.4171/jems/510/

Cité par Sources :