On the number of positive solutions of singularly perturbed 1D NLS
Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 253-268.

Voir la notice de l'article provenant de la source EMS Press

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V(x) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to ∞ as ε→0. We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V(x). Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.
DOI : 10.4171/jems/51
Classification : 35-XX, 00-XX
Keywords: Nonlinear Schrödinger equations, singular perturbations, adiabatic profiles
@article{JEMS_2006_8_2_a9,
     author = {Patricio A. Felmer and Salom\'e Mart{\'\i}nez and Kazunaga Tanaka},
     title = {On the number of positive solutions of singularly perturbed {1D} {NLS}},
     journal = {Journal of the European Mathematical Society},
     pages = {253--268},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4171/jems/51},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/51/}
}
TY  - JOUR
AU  - Patricio A. Felmer
AU  - Salomé Martínez
AU  - Kazunaga Tanaka
TI  - On the number of positive solutions of singularly perturbed 1D NLS
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 253
EP  - 268
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/51/
DO  - 10.4171/jems/51
ID  - JEMS_2006_8_2_a9
ER  - 
%0 Journal Article
%A Patricio A. Felmer
%A Salomé Martínez
%A Kazunaga Tanaka
%T On the number of positive solutions of singularly perturbed 1D NLS
%J Journal of the European Mathematical Society
%D 2006
%P 253-268
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/51/
%R 10.4171/jems/51
%F JEMS_2006_8_2_a9
Patricio A. Felmer; Salomé Martínez; Kazunaga Tanaka. On the number of positive solutions of singularly perturbed 1D NLS. Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 253-268. doi : 10.4171/jems/51. http://geodesic.mathdoc.fr/articles/10.4171/jems/51/

Cité par Sources :