Geometry of non-holonomic diffusion
Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 273-319.

Voir la notice de l'article provenant de la source EMS Press

We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For G-Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.
DOI : 10.4171/jems/504
Classification : 37-XX, 00-XX, 58-XX, 93-XX
Keywords: Non-holonomic system, symmetry, measure, reduction, diffusion, Brownian motion, generator, Chaplygin system, snakeboard, two-wheeled carriage
@article{JEMS_2015_17_2_a2,
     author = {Simon Hochgerner and Tudor S. Ratiu},
     title = {Geometry of non-holonomic diffusion},
     journal = {Journal of the European Mathematical Society},
     pages = {273--319},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4171/jems/504},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/504/}
}
TY  - JOUR
AU  - Simon Hochgerner
AU  - Tudor S. Ratiu
TI  - Geometry of non-holonomic diffusion
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 273
EP  - 319
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/504/
DO  - 10.4171/jems/504
ID  - JEMS_2015_17_2_a2
ER  - 
%0 Journal Article
%A Simon Hochgerner
%A Tudor S. Ratiu
%T Geometry of non-holonomic diffusion
%J Journal of the European Mathematical Society
%D 2015
%P 273-319
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/504/
%R 10.4171/jems/504
%F JEMS_2015_17_2_a2
Simon Hochgerner; Tudor S. Ratiu. Geometry of non-holonomic diffusion. Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 273-319. doi : 10.4171/jems/504. http://geodesic.mathdoc.fr/articles/10.4171/jems/504/

Cité par Sources :