Cheeger inequalities for unbounded graph Laplacians
Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 259-271.

Voir la notice de l'article provenant de la source EMS Press

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.
DOI : 10.4171/jems/503
Classification : 47-XX, 05-XX, 35-XX, 39-XX
Keywords: Isoperimetric inequality, intrinsic metric, Schrödinger operators, weighted graphs, curvature, volume growth
@article{JEMS_2015_17_2_a1,
     author = {Frank Bauer and Matthias Keller and Rados{\l}aw K. Wojciechowski},
     title = {Cheeger inequalities for unbounded graph {Laplacians}},
     journal = {Journal of the European Mathematical Society},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4171/jems/503},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/503/}
}
TY  - JOUR
AU  - Frank Bauer
AU  - Matthias Keller
AU  - Radosław K. Wojciechowski
TI  - Cheeger inequalities for unbounded graph Laplacians
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 259
EP  - 271
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/503/
DO  - 10.4171/jems/503
ID  - JEMS_2015_17_2_a1
ER  - 
%0 Journal Article
%A Frank Bauer
%A Matthias Keller
%A Radosław K. Wojciechowski
%T Cheeger inequalities for unbounded graph Laplacians
%J Journal of the European Mathematical Society
%D 2015
%P 259-271
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/503/
%R 10.4171/jems/503
%F JEMS_2015_17_2_a1
Frank Bauer; Matthias Keller; Radosław K. Wojciechowski. Cheeger inequalities for unbounded graph Laplacians. Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 259-271. doi : 10.4171/jems/503. http://geodesic.mathdoc.fr/articles/10.4171/jems/503/

Cité par Sources :