Cheeger inequalities for unbounded graph Laplacians
Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 259-271
Cet article a éte moissonné depuis la source EMS Press
We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.
Classification :
47-XX, 05-XX, 35-XX, 39-XX
Keywords: Isoperimetric inequality, intrinsic metric, Schrödinger operators, weighted graphs, curvature, volume growth
Keywords: Isoperimetric inequality, intrinsic metric, Schrödinger operators, weighted graphs, curvature, volume growth
@article{JEMS_2015_17_2_a1,
author = {Frank Bauer and Matthias Keller and Rados{\l}aw K. Wojciechowski},
title = {Cheeger inequalities for unbounded graph {Laplacians}},
journal = {Journal of the European Mathematical Society},
pages = {259--271},
year = {2015},
volume = {17},
number = {2},
doi = {10.4171/jems/503},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/503/}
}
TY - JOUR AU - Frank Bauer AU - Matthias Keller AU - Radosław K. Wojciechowski TI - Cheeger inequalities for unbounded graph Laplacians JO - Journal of the European Mathematical Society PY - 2015 SP - 259 EP - 271 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/503/ DO - 10.4171/jems/503 ID - JEMS_2015_17_2_a1 ER -
%0 Journal Article %A Frank Bauer %A Matthias Keller %A Radosław K. Wojciechowski %T Cheeger inequalities for unbounded graph Laplacians %J Journal of the European Mathematical Society %D 2015 %P 259-271 %V 17 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/503/ %R 10.4171/jems/503 %F JEMS_2015_17_2_a1
Frank Bauer; Matthias Keller; Radosław K. Wojciechowski. Cheeger inequalities for unbounded graph Laplacians. Journal of the European Mathematical Society, Tome 17 (2015) no. 2, pp. 259-271. doi: 10.4171/jems/503
Cité par Sources :