Stacks of group representations
Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 189-228.

Voir la notice de l'article provenant de la source EMS Press

We start with a small paradigm shift about group representations, namely the observation that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that, given a group G, the derived and the stable categories of representations of a subgroup H can be constructed out of the corresponding category for G by a purely triangulated-categorical construction, analogous to étale extension in algebraic geometry.
DOI : 10.4171/jems/501
Classification : 20-XX, 00-XX, 14-XX, 18-XX
Keywords: Restriction, extension, monad, stack, modular representations, finite group, ring object, descent, endotrivial representation
@article{JEMS_2015_17_1_a4,
     author = {Paul Balmer},
     title = {Stacks of group representations},
     journal = {Journal of the European Mathematical Society},
     pages = {189--228},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4171/jems/501},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/501/}
}
TY  - JOUR
AU  - Paul Balmer
TI  - Stacks of group representations
JO  - Journal of the European Mathematical Society
PY  - 2015
SP  - 189
EP  - 228
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/501/
DO  - 10.4171/jems/501
ID  - JEMS_2015_17_1_a4
ER  - 
%0 Journal Article
%A Paul Balmer
%T Stacks of group representations
%J Journal of the European Mathematical Society
%D 2015
%P 189-228
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/501/
%R 10.4171/jems/501
%F JEMS_2015_17_1_a4
Paul Balmer. Stacks of group representations. Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 189-228. doi : 10.4171/jems/501. http://geodesic.mathdoc.fr/articles/10.4171/jems/501/

Cité par Sources :