Quantitative spectral gap for thin groups of hyperbolic isometries
Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 151-187
Cet article a éte moissonné depuis la source EMS Press
Let Λ be a subgroup of an arithmetic lattice in SO(n+1,1). The quotient Hn+1/Λ has a natural family of congruence covers corresponding to ideals in a ring of integers. We establish a super-strong approximation result for Zariski-dense Λ with some additional regularity and thickness properties. Concretely, this asserts a quantitative spectral gap for the Laplacian operators on the congruence covers. This generalizes results of Sarnak and Xue (1991) and Gamburd (2002).
@article{JEMS_2015_17_1_a3,
author = {Michael Magee},
title = {Quantitative spectral gap for thin groups of hyperbolic isometries},
journal = {Journal of the European Mathematical Society},
pages = {151--187},
year = {2015},
volume = {17},
number = {1},
doi = {10.4171/jems/500},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/500/}
}
TY - JOUR AU - Michael Magee TI - Quantitative spectral gap for thin groups of hyperbolic isometries JO - Journal of the European Mathematical Society PY - 2015 SP - 151 EP - 187 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/500/ DO - 10.4171/jems/500 ID - JEMS_2015_17_1_a3 ER -
Michael Magee. Quantitative spectral gap for thin groups of hyperbolic isometries. Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 151-187. doi: 10.4171/jems/500
Cité par Sources :