Partial hyperbolicity and homoclinic tangencies
Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 1-49
Cet article a éte moissonné depuis la source EMS Press
We show that any diffeomorphism of a compact manifold can be C1 approximated by diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyperbolic structure.
Classification :
37-XX, 00-XX
Keywords: Homoclinic tangency, heterodimensional cycle, hyperbolic diffeomorphism, generic dynamics, homoclinic class, partial hyperbolicity
Keywords: Homoclinic tangency, heterodimensional cycle, hyperbolic diffeomorphism, generic dynamics, homoclinic class, partial hyperbolicity
@article{JEMS_2015_17_1_a0,
author = {Sylvain Crovisier and Martin Sambarino and Dawei Yang},
title = {Partial hyperbolicity and homoclinic tangencies},
journal = {Journal of the European Mathematical Society},
pages = {1--49},
year = {2015},
volume = {17},
number = {1},
doi = {10.4171/jems/497},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/497/}
}
TY - JOUR AU - Sylvain Crovisier AU - Martin Sambarino AU - Dawei Yang TI - Partial hyperbolicity and homoclinic tangencies JO - Journal of the European Mathematical Society PY - 2015 SP - 1 EP - 49 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/497/ DO - 10.4171/jems/497 ID - JEMS_2015_17_1_a0 ER -
Sylvain Crovisier; Martin Sambarino; Dawei Yang. Partial hyperbolicity and homoclinic tangencies. Journal of the European Mathematical Society, Tome 17 (2015) no. 1, pp. 1-49. doi: 10.4171/jems/497
Cité par Sources :