Abelian ideals of a Borel subalgebra and root systems
Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2693-2708.

Voir la notice de l'article provenant de la source EMS Press

Let g be a simple Lie algebra and Abo the poset of non-trivial abelian ideals of a fixed Borel subalgebra of g. In [8], we constructed a partition Abo=⊔μ​Abμ​ parameterised by the long positive roots of g and studied the subposets Abμ​. In this note, we show that this partition is compatible with intersections, relate it to the Kostant-Peterson parameterisation and to the centralisers of abelian ideals. We also prove that the poset of positive roots of g is a join-semilattice.
DOI : 10.4171/jems/496
Classification : 17-XX, 00-XX, 20-XX
Keywords: Root system, Borel subalgebra, minuscule element, abelian ideal
@article{JEMS_2014_16_12_a4,
     author = {Dmitri I. Panyushev},
     title = {Abelian ideals of a {Borel} subalgebra and root systems},
     journal = {Journal of the European Mathematical Society},
     pages = {2693--2708},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2014},
     doi = {10.4171/jems/496},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/496/}
}
TY  - JOUR
AU  - Dmitri I. Panyushev
TI  - Abelian ideals of a Borel subalgebra and root systems
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2693
EP  - 2708
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/496/
DO  - 10.4171/jems/496
ID  - JEMS_2014_16_12_a4
ER  - 
%0 Journal Article
%A Dmitri I. Panyushev
%T Abelian ideals of a Borel subalgebra and root systems
%J Journal of the European Mathematical Society
%D 2014
%P 2693-2708
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/496/
%R 10.4171/jems/496
%F JEMS_2014_16_12_a4
Dmitri I. Panyushev. Abelian ideals of a Borel subalgebra and root systems. Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2693-2708. doi : 10.4171/jems/496. http://geodesic.mathdoc.fr/articles/10.4171/jems/496/

Cité par Sources :