Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2557-2615
Voir la notice de l'article provenant de la source EMS Press
Let D be a simply connected, smooth enough domain of R2. For L>0 consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on Z2 with initial condition such that σx=−1 if x∈LD and σx=+1 otherwise. It is conjectured [23] that, in the diffusive limit where space is rescaled by L, time by L2 and L→∞, the boundary of the droplet of "−" spins follows a deterministic anisotropic curve-shortening flow, where the normal velocity at a point of its boundary is given by the local curvature times an explicit function of the local slope. The behavior should be similar at finite temperature T, with a different temperature-dependent anisotropy function.
Classification :
60-XX, 00-XX, 82-XX
Keywords: Ising model, Glauber dynamics, curve-shortening flow
Keywords: Ising model, Glauber dynamics, curve-shortening flow
@article{JEMS_2014_16_12_a1,
author = {Hubert Lacoin and Fran\c{c}ois Simenhaus and Fabio L. Toninelli},
title = {Zero-temperature {2D} stochastic {Ising} model and anisotropic curve-shortening flow},
journal = {Journal of the European Mathematical Society},
pages = {2557--2615},
publisher = {mathdoc},
volume = {16},
number = {12},
year = {2014},
doi = {10.4171/jems/493},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/493/}
}
TY - JOUR AU - Hubert Lacoin AU - François Simenhaus AU - Fabio L. Toninelli TI - Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow JO - Journal of the European Mathematical Society PY - 2014 SP - 2557 EP - 2615 VL - 16 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/493/ DO - 10.4171/jems/493 ID - JEMS_2014_16_12_a1 ER -
%0 Journal Article %A Hubert Lacoin %A François Simenhaus %A Fabio L. Toninelli %T Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow %J Journal of the European Mathematical Society %D 2014 %P 2557-2615 %V 16 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/493/ %R 10.4171/jems/493 %F JEMS_2014_16_12_a1
Hubert Lacoin; François Simenhaus; Fabio L. Toninelli. Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow. Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2557-2615. doi: 10.4171/jems/493
Cité par Sources :