Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2557-2615.

Voir la notice de l'article provenant de la source EMS Press

Let D be a simply connected, smooth enough domain of R2. For L>0 consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on Z2 with initial condition such that σx​=−1 if x∈LD and σx​=+1 otherwise. It is conjectured [23] that, in the diffusive limit where space is rescaled by L, time by L2 and L→∞, the boundary of the droplet of "−" spins follows a deterministic anisotropic curve-shortening flow, where the normal velocity at a point of its boundary is given by the local curvature times an explicit function of the local slope. The behavior should be similar at finite temperature T​, with a different temperature-dependent anisotropy function.
DOI : 10.4171/jems/493
Classification : 60-XX, 00-XX, 82-XX
Keywords: Ising model, Glauber dynamics, curve-shortening flow
@article{JEMS_2014_16_12_a1,
     author = {Hubert Lacoin and Fran\c{c}ois Simenhaus and Fabio L. Toninelli},
     title = {Zero-temperature {2D} stochastic {Ising} model and anisotropic curve-shortening flow},
     journal = {Journal of the European Mathematical Society},
     pages = {2557--2615},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2014},
     doi = {10.4171/jems/493},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/493/}
}
TY  - JOUR
AU  - Hubert Lacoin
AU  - François Simenhaus
AU  - Fabio L. Toninelli
TI  - Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2557
EP  - 2615
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/493/
DO  - 10.4171/jems/493
ID  - JEMS_2014_16_12_a1
ER  - 
%0 Journal Article
%A Hubert Lacoin
%A François Simenhaus
%A Fabio L. Toninelli
%T Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
%J Journal of the European Mathematical Society
%D 2014
%P 2557-2615
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/493/
%R 10.4171/jems/493
%F JEMS_2014_16_12_a1
Hubert Lacoin; François Simenhaus; Fabio L. Toninelli. Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow. Journal of the European Mathematical Society, Tome 16 (2014) no. 12, pp. 2557-2615. doi : 10.4171/jems/493. http://geodesic.mathdoc.fr/articles/10.4171/jems/493/

Cité par Sources :