Global solutions of quasilinear systems of Klein–Gordon equations in 3D
Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2355-2431.

Voir la notice de l'article provenant de la source EMS Press

We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.
DOI : 10.4171/jems/489
Classification : 35-XX, 76-XX
Keywords: Quasilinear Klein–Gordon systems, global stability and scattering, Euler–Maxwell one-fluid system
@article{JEMS_2014_16_11_a2,
     author = {Alexandru D. Ionescu and Beno{\^\i}t Pausader},
     title = {Global solutions of quasilinear systems of {Klein{\textendash}Gordon} equations in {3D}},
     journal = {Journal of the European Mathematical Society},
     pages = {2355--2431},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2014},
     doi = {10.4171/jems/489},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/489/}
}
TY  - JOUR
AU  - Alexandru D. Ionescu
AU  - Benoît Pausader
TI  - Global solutions of quasilinear systems of Klein–Gordon equations in 3D
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2355
EP  - 2431
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/489/
DO  - 10.4171/jems/489
ID  - JEMS_2014_16_11_a2
ER  - 
%0 Journal Article
%A Alexandru D. Ionescu
%A Benoît Pausader
%T Global solutions of quasilinear systems of Klein–Gordon equations in 3D
%J Journal of the European Mathematical Society
%D 2014
%P 2355-2431
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/489/
%R 10.4171/jems/489
%F JEMS_2014_16_11_a2
Alexandru D. Ionescu; Benoît Pausader. Global solutions of quasilinear systems of Klein–Gordon equations in 3D. Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2355-2431. doi : 10.4171/jems/489. http://geodesic.mathdoc.fr/articles/10.4171/jems/489/

Cité par Sources :