Global solutions of quasilinear systems of Klein–Gordon equations in 3D
Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2355-2431
Cet article a éte moissonné depuis la source EMS Press
We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.
Classification :
35-XX, 76-XX
Keywords: Quasilinear Klein–Gordon systems, global stability and scattering, Euler–Maxwell one-fluid system
Keywords: Quasilinear Klein–Gordon systems, global stability and scattering, Euler–Maxwell one-fluid system
@article{JEMS_2014_16_11_a2,
author = {Alexandru D. Ionescu and Beno{\^\i}t Pausader},
title = {Global solutions of quasilinear systems of {Klein{\textendash}Gordon} equations in {3D}},
journal = {Journal of the European Mathematical Society},
pages = {2355--2431},
year = {2014},
volume = {16},
number = {11},
doi = {10.4171/jems/489},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/489/}
}
TY - JOUR AU - Alexandru D. Ionescu AU - Benoît Pausader TI - Global solutions of quasilinear systems of Klein–Gordon equations in 3D JO - Journal of the European Mathematical Society PY - 2014 SP - 2355 EP - 2431 VL - 16 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/489/ DO - 10.4171/jems/489 ID - JEMS_2014_16_11_a2 ER -
%0 Journal Article %A Alexandru D. Ionescu %A Benoît Pausader %T Global solutions of quasilinear systems of Klein–Gordon equations in 3D %J Journal of the European Mathematical Society %D 2014 %P 2355-2431 %V 16 %N 11 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/489/ %R 10.4171/jems/489 %F JEMS_2014_16_11_a2
Alexandru D. Ionescu; Benoît Pausader. Global solutions of quasilinear systems of Klein–Gordon equations in 3D. Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2355-2431. doi: 10.4171/jems/489
Cité par Sources :