Variation for the Riesz transform and uniform rectifiability
Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2267-2321.

Voir la notice de l'article provenant de la source EMS Press

For 1≤nand ρ>2, we prove that an n-dimensional Ahlfors–David regular measure μ in Rd is uniformly n-rectifiable if and only if the ρ-variation for the Riesz transform with respect to μ is a bounded operator in L2(μ). This result can be considered as a partial solution to a well known open problem posed by G. David and S. Semmes which relates the L2(μ) boundedness of the Riesz transform to the uniform rectifiability of μ.
DOI : 10.4171/jems/487
Classification : 42-XX, 00-XX
Keywords: ρ-variation and oscillation, Calderón-Zygmund singular integrals, Riesz transform, uniform rectifiability
@article{JEMS_2014_16_11_a0,
     author = {Albert Mas and Xavier Tolsa},
     title = {Variation for the {Riesz} transform and uniform rectifiability},
     journal = {Journal of the European Mathematical Society},
     pages = {2267--2321},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2014},
     doi = {10.4171/jems/487},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/487/}
}
TY  - JOUR
AU  - Albert Mas
AU  - Xavier Tolsa
TI  - Variation for the Riesz transform and uniform rectifiability
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2267
EP  - 2321
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/487/
DO  - 10.4171/jems/487
ID  - JEMS_2014_16_11_a0
ER  - 
%0 Journal Article
%A Albert Mas
%A Xavier Tolsa
%T Variation for the Riesz transform and uniform rectifiability
%J Journal of the European Mathematical Society
%D 2014
%P 2267-2321
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/487/
%R 10.4171/jems/487
%F JEMS_2014_16_11_a0
Albert Mas; Xavier Tolsa. Variation for the Riesz transform and uniform rectifiability. Journal of the European Mathematical Society, Tome 16 (2014) no. 11, pp. 2267-2321. doi : 10.4171/jems/487. http://geodesic.mathdoc.fr/articles/10.4171/jems/487/

Cité par Sources :