Strongly elliptic linear operators without coercive quadratic forms. I. Constant coefficient operators and forms
Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2165-2210.

Voir la notice de l'article provenant de la source EMS Press

A family of linear homogeneous 4th order elliptic differential operators L with real constant coefficients, and bounded nonsmooth convex domains Ω are constructed in R6 so that the L have no constant coefficient coercive integro-differential quadratic forms over the Sobolev spaces W2,2(Ω).
DOI : 10.4171/jems/485
Classification : 35-XX, 00-XX, 15-XX
Keywords: Neumann problem, Rellich identity, Legendre–Hadamard, Korn inequality, Lax–Milgram, sum of squares, null form, indefinite form
@article{JEMS_2014_16_10_a3,
     author = {Gregory C. Verchota},
     title = {Strongly elliptic linear operators without coercive quadratic forms. {I.} {Constant} coefficient operators and forms},
     journal = {Journal of the European Mathematical Society},
     pages = {2165--2210},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2014},
     doi = {10.4171/jems/485},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/485/}
}
TY  - JOUR
AU  - Gregory C. Verchota
TI  - Strongly elliptic linear operators without coercive quadratic forms. I. Constant coefficient operators and forms
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2165
EP  - 2210
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/485/
DO  - 10.4171/jems/485
ID  - JEMS_2014_16_10_a3
ER  - 
%0 Journal Article
%A Gregory C. Verchota
%T Strongly elliptic linear operators without coercive quadratic forms. I. Constant coefficient operators and forms
%J Journal of the European Mathematical Society
%D 2014
%P 2165-2210
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/485/
%R 10.4171/jems/485
%F JEMS_2014_16_10_a3
Gregory C. Verchota. Strongly elliptic linear operators without coercive quadratic forms. I. Constant coefficient operators and forms. Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2165-2210. doi : 10.4171/jems/485. http://geodesic.mathdoc.fr/articles/10.4171/jems/485/

Cité par Sources :