Brill–Noether loci for divisors on irregular varieties
Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2033-2057.

Voir la notice de l'article provenant de la source EMS Press

We take up the study of the Brill-Noether loci Wr(L,X):={η∈Pic0(X) ∣ h0(L⊗η)≥r+1}, where X is a smooth projective variety of dimension >1, L∈Pic(X), and r≥0 is an integer.
DOI : 10.4171/jems/482
Classification : 14-XX, 00-XX
Keywords: Irregular variety, Brill–Noether theory, Albanese dimension
@article{JEMS_2014_16_10_a0,
     author = {Margarida Mendes Lopes and Rita Pardini and Gian Pietro Pirola},
     title = {Brill{\textendash}Noether loci for divisors on irregular varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {2033--2057},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2014},
     doi = {10.4171/jems/482},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/482/}
}
TY  - JOUR
AU  - Margarida Mendes Lopes
AU  - Rita Pardini
AU  - Gian Pietro Pirola
TI  - Brill–Noether loci for divisors on irregular varieties
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2033
EP  - 2057
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/482/
DO  - 10.4171/jems/482
ID  - JEMS_2014_16_10_a0
ER  - 
%0 Journal Article
%A Margarida Mendes Lopes
%A Rita Pardini
%A Gian Pietro Pirola
%T Brill–Noether loci for divisors on irregular varieties
%J Journal of the European Mathematical Society
%D 2014
%P 2033-2057
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/482/
%R 10.4171/jems/482
%F JEMS_2014_16_10_a0
Margarida Mendes Lopes; Rita Pardini; Gian Pietro Pirola. Brill–Noether loci for divisors on irregular varieties. Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2033-2057. doi : 10.4171/jems/482. http://geodesic.mathdoc.fr/articles/10.4171/jems/482/

Cité par Sources :