Brill–Noether loci for divisors on irregular varieties
Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2033-2057
Cet article a éte moissonné depuis la source EMS Press
We take up the study of the Brill-Noether loci Wr(L,X):={η∈Pic0(X) ∣ h0(L⊗η)≥r+1}, where X is a smooth projective variety of dimension >1, L∈Pic(X), and r≥0 is an integer.
Classification :
14-XX, 00-XX
Keywords: Irregular variety, Brill–Noether theory, Albanese dimension
Keywords: Irregular variety, Brill–Noether theory, Albanese dimension
@article{JEMS_2014_16_10_a0,
author = {Margarida Mendes Lopes and Rita Pardini and Gian Pietro Pirola},
title = {Brill{\textendash}Noether loci for divisors on irregular varieties},
journal = {Journal of the European Mathematical Society},
pages = {2033--2057},
year = {2014},
volume = {16},
number = {10},
doi = {10.4171/jems/482},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/482/}
}
TY - JOUR AU - Margarida Mendes Lopes AU - Rita Pardini AU - Gian Pietro Pirola TI - Brill–Noether loci for divisors on irregular varieties JO - Journal of the European Mathematical Society PY - 2014 SP - 2033 EP - 2057 VL - 16 IS - 10 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/482/ DO - 10.4171/jems/482 ID - JEMS_2014_16_10_a0 ER -
%0 Journal Article %A Margarida Mendes Lopes %A Rita Pardini %A Gian Pietro Pirola %T Brill–Noether loci for divisors on irregular varieties %J Journal of the European Mathematical Society %D 2014 %P 2033-2057 %V 16 %N 10 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/482/ %R 10.4171/jems/482 %F JEMS_2014_16_10_a0
Margarida Mendes Lopes; Rita Pardini; Gian Pietro Pirola. Brill–Noether loci for divisors on irregular varieties. Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2033-2057. doi: 10.4171/jems/482
Cité par Sources :