On a notion of “Galois closure” for extensions of rings
Journal of the European Mathematical Society, Tome 16 (2014) no. 9, pp. 1881-1913
Cet article a éte moissonné depuis la source EMS Press
We introduce a notion of “Galois closure” for extensions of rings. We show that the notion agrees with the usual notion of Galois closure in the case of an Sn degree n extension of fields. Moreover, we prove a number of properties of this construction; for example, we show that it is functorial and respects base change. We also investigate the behavior of this Galois closure construction for various natural classes of ring extensions
Classification :
11-XX, 13-XX
Keywords: Galois closure, ring extension, field extension, étale extension, monogenic extension, Sn-representation
Keywords: Galois closure, ring extension, field extension, étale extension, monogenic extension, Sn-representation
@article{JEMS_2014_16_9_a3,
author = {Manjul Bhargava and Matthew Satriano},
title = {On a notion of {{\textquotedblleft}Galois} closure{\textquotedblright} for extensions of rings},
journal = {Journal of the European Mathematical Society},
pages = {1881--1913},
year = {2014},
volume = {16},
number = {9},
doi = {10.4171/jems/478},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/478/}
}
TY - JOUR AU - Manjul Bhargava AU - Matthew Satriano TI - On a notion of “Galois closure” for extensions of rings JO - Journal of the European Mathematical Society PY - 2014 SP - 1881 EP - 1913 VL - 16 IS - 9 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/478/ DO - 10.4171/jems/478 ID - JEMS_2014_16_9_a3 ER -
Manjul Bhargava; Matthew Satriano. On a notion of “Galois closure” for extensions of rings. Journal of the European Mathematical Society, Tome 16 (2014) no. 9, pp. 1881-1913. doi: 10.4171/jems/478
Cité par Sources :