On a notion of “Galois closure” for extensions of rings
Journal of the European Mathematical Society, Tome 16 (2014) no. 9, pp. 1881-1913.

Voir la notice de l'article provenant de la source EMS Press

We introduce a notion of “Galois closure” for extensions of rings. We show that the notion agrees with the usual notion of Galois closure in the case of an Sn​ degree n extension of fields. Moreover, we prove a number of properties of this construction; for example, we show that it is functorial and respects base change. We also investigate the behavior of this Galois closure construction for various natural classes of ring extensions
DOI : 10.4171/jems/478
Classification : 11-XX, 13-XX
Keywords: Galois closure, ring extension, field extension, étale extension, monogenic extension, Sn​-representation
@article{JEMS_2014_16_9_a3,
     author = {Manjul Bhargava and Matthew Satriano},
     title = {On a notion of {{\textquotedblleft}Galois} closure{\textquotedblright} for extensions of rings},
     journal = {Journal of the European Mathematical Society},
     pages = {1881--1913},
     publisher = {mathdoc},
     volume = {16},
     number = {9},
     year = {2014},
     doi = {10.4171/jems/478},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/478/}
}
TY  - JOUR
AU  - Manjul Bhargava
AU  - Matthew Satriano
TI  - On a notion of “Galois closure” for extensions of rings
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 1881
EP  - 1913
VL  - 16
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/478/
DO  - 10.4171/jems/478
ID  - JEMS_2014_16_9_a3
ER  - 
%0 Journal Article
%A Manjul Bhargava
%A Matthew Satriano
%T On a notion of “Galois closure” for extensions of rings
%J Journal of the European Mathematical Society
%D 2014
%P 1881-1913
%V 16
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/478/
%R 10.4171/jems/478
%F JEMS_2014_16_9_a3
Manjul Bhargava; Matthew Satriano. On a notion of “Galois closure” for extensions of rings. Journal of the European Mathematical Society, Tome 16 (2014) no. 9, pp. 1881-1913. doi : 10.4171/jems/478. http://geodesic.mathdoc.fr/articles/10.4171/jems/478/

Cité par Sources :