Dissipative Euler flows and Onsager's conjecture
Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1467-1505
Cet article a éte moissonné depuis la source EMS Press
Building upon the techniques introduced in [15], for any θ101 we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent θ. A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent θ31. Our theorem is the first result in this direction.
Classification :
35-XX, 76-XX
Keywords: Euler equations, Onsager’s conjecture, turbulence
Keywords: Euler equations, Onsager’s conjecture, turbulence
@article{JEMS_2014_16_7_a4,
author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi Jr.},
title = {Dissipative {Euler} flows and {Onsager's} conjecture},
journal = {Journal of the European Mathematical Society},
pages = {1467--1505},
year = {2014},
volume = {16},
number = {7},
doi = {10.4171/jems/466},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/466/}
}
TY - JOUR AU - Camillo De Lellis AU - László Székelyhidi Jr. TI - Dissipative Euler flows and Onsager's conjecture JO - Journal of the European Mathematical Society PY - 2014 SP - 1467 EP - 1505 VL - 16 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/466/ DO - 10.4171/jems/466 ID - JEMS_2014_16_7_a4 ER -
Camillo De Lellis; László Székelyhidi Jr. Dissipative Euler flows and Onsager's conjecture. Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1467-1505. doi: 10.4171/jems/466
Cité par Sources :