Dissipative Euler flows and Onsager's conjecture
Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1467-1505.

Voir la notice de l'article provenant de la source EMS Press

Building upon the techniques introduced in [15], for any θ101​ we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent θ. A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent θ31​. Our theorem is the first result in this direction.
DOI : 10.4171/jems/466
Classification : 35-XX, 76-XX
Keywords: Euler equations, Onsager’s conjecture, turbulence
@article{JEMS_2014_16_7_a4,
     author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi Jr.},
     title = {Dissipative {Euler} flows and {Onsager's} conjecture},
     journal = {Journal of the European Mathematical Society},
     pages = {1467--1505},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2014},
     doi = {10.4171/jems/466},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/466/}
}
TY  - JOUR
AU  - Camillo De Lellis
AU  - László Székelyhidi Jr.
TI  - Dissipative Euler flows and Onsager's conjecture
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 1467
EP  - 1505
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/466/
DO  - 10.4171/jems/466
ID  - JEMS_2014_16_7_a4
ER  - 
%0 Journal Article
%A Camillo De Lellis
%A László Székelyhidi Jr.
%T Dissipative Euler flows and Onsager's conjecture
%J Journal of the European Mathematical Society
%D 2014
%P 1467-1505
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/466/
%R 10.4171/jems/466
%F JEMS_2014_16_7_a4
Camillo De Lellis; László Székelyhidi Jr. Dissipative Euler flows and Onsager's conjecture. Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1467-1505. doi : 10.4171/jems/466. http://geodesic.mathdoc.fr/articles/10.4171/jems/466/

Cité par Sources :