Propagation of chaos for the 2D viscous vortex model
Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1423-1466
Cet article a éte moissonné depuis la source EMS Press
We consider a stochastic system of N particles, usually called vortices in that setting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial distribution of the position and circulation of the vortices has finite (partial) entropy and a finite moment of positive order, we show that the empirical measure of the particle system converges in law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation. We actually prove a slightly stronger result: the propagation of chaos of the stochastic paths towards the solution of the expected nonlinear stochastic differential equation. Moreover, the convergence holds in a strong sense, usually called entropic (there is no loss of entropy in the limit). The result holds without restriction (but positivity) on the viscosity parameter.
Classification :
65-XX, 35-XX, 82-XX
Keywords: 2D Navier-Stokes equation, Stochastic particle systems, Propagation of Chaos, Fisher information, Entropy dissipation
Keywords: 2D Navier-Stokes equation, Stochastic particle systems, Propagation of Chaos, Fisher information, Entropy dissipation
@article{JEMS_2014_16_7_a3,
author = {Nicolas Fournier and Maxime Hauray and St\'ephane Mischler},
title = {Propagation of chaos for the {2D} viscous vortex model},
journal = {Journal of the European Mathematical Society},
pages = {1423--1466},
year = {2014},
volume = {16},
number = {7},
doi = {10.4171/jems/465},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/465/}
}
TY - JOUR AU - Nicolas Fournier AU - Maxime Hauray AU - Stéphane Mischler TI - Propagation of chaos for the 2D viscous vortex model JO - Journal of the European Mathematical Society PY - 2014 SP - 1423 EP - 1466 VL - 16 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/465/ DO - 10.4171/jems/465 ID - JEMS_2014_16_7_a3 ER -
%0 Journal Article %A Nicolas Fournier %A Maxime Hauray %A Stéphane Mischler %T Propagation of chaos for the 2D viscous vortex model %J Journal of the European Mathematical Society %D 2014 %P 1423-1466 %V 16 %N 7 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/465/ %R 10.4171/jems/465 %F JEMS_2014_16_7_a3
Nicolas Fournier; Maxime Hauray; Stéphane Mischler. Propagation of chaos for the 2D viscous vortex model. Journal of the European Mathematical Society, Tome 16 (2014) no. 7, pp. 1423-1466. doi: 10.4171/jems/465
Cité par Sources :