On the strange duality conjecture for abelian surfaces
Journal of the European Mathematical Society, Tome 16 (2014) no. 6, pp. 1221-1252
Cet article a éte moissonné depuis la source EMS Press
We study Le Potier's strange duality conjecture for moduli spaces of sheaves over generic abelian surfaces. We prove the isomorphism for abelian surfaces which are products of elliptic curves, when the moduli spaces consist of sheaves of equal ranks and fiber degree 1. The birational type of the moduli space of sheaves is also investigated. Generalizations to arbitrary product elliptic surfaces are given.
Classification :
14-XX, 00-XX
Keywords: Moduli spaces of sheaves, abelian surfaces, strange duality
Keywords: Moduli spaces of sheaves, abelian surfaces, strange duality
@article{JEMS_2014_16_6_a3,
author = {Alina Marian and Dragos Oprea},
title = {On the strange duality conjecture for abelian surfaces},
journal = {Journal of the European Mathematical Society},
pages = {1221--1252},
year = {2014},
volume = {16},
number = {6},
doi = {10.4171/jems/459},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/459/}
}
TY - JOUR AU - Alina Marian AU - Dragos Oprea TI - On the strange duality conjecture for abelian surfaces JO - Journal of the European Mathematical Society PY - 2014 SP - 1221 EP - 1252 VL - 16 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/459/ DO - 10.4171/jems/459 ID - JEMS_2014_16_6_a3 ER -
Alina Marian; Dragos Oprea. On the strange duality conjecture for abelian surfaces. Journal of the European Mathematical Society, Tome 16 (2014) no. 6, pp. 1221-1252. doi: 10.4171/jems/459
Cité par Sources :