An existence theorem for the Yamabe problem on manifolds with boundary
Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 991-1016.

Voir la notice de l'article provenant de la source EMS Press

Let (M,g) be a compact Riemannian manifold with boundary. We consider the problem (first studied by Escobar in 1992) of finding a conformal metric with constant scalar curvature in the interior and zero mean curvature on the boundary. Using a local test function construction, we are able to settle most cases left open by Escobar's work. Moreover, we reduce the remaining cases to the positive mass theorem.
DOI : 10.4171/jems/453
Classification : 53-XX, 00-XX, 35-XX
Keywords: Yamabe problem, manifolds with boundary
@article{JEMS_2014_16_5_a3,
     author = {Simon Brendle and Szu-Yu Sophie Chen},
     title = {An existence theorem for the {Yamabe} problem on manifolds with boundary},
     journal = {Journal of the European Mathematical Society},
     pages = {991--1016},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2014},
     doi = {10.4171/jems/453},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/453/}
}
TY  - JOUR
AU  - Simon Brendle
AU  - Szu-Yu Sophie Chen
TI  - An existence theorem for the Yamabe problem on manifolds with boundary
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 991
EP  - 1016
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/453/
DO  - 10.4171/jems/453
ID  - JEMS_2014_16_5_a3
ER  - 
%0 Journal Article
%A Simon Brendle
%A Szu-Yu Sophie Chen
%T An existence theorem for the Yamabe problem on manifolds with boundary
%J Journal of the European Mathematical Society
%D 2014
%P 991-1016
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/453/
%R 10.4171/jems/453
%F JEMS_2014_16_5_a3
Simon Brendle; Szu-Yu Sophie Chen. An existence theorem for the Yamabe problem on manifolds with boundary. Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 991-1016. doi : 10.4171/jems/453. http://geodesic.mathdoc.fr/articles/10.4171/jems/453/

Cité par Sources :