Jordan types for indecomposable modules of finite group schemes
Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 925-989.

Voir la notice de l'article provenant de la source EMS Press

In this article we study the interplay between algebro-geometric notions related to π-points and structural features of the stable Auslander-Reiten quiver of a finite group scheme. We show that π-points give rise to a number of new invariants of the AR-quiver on one hand, and exploit combinatorial properties of AR-components to obtain information on π-points on the other. Special attention is given to components containing Carlson modules, constantly supported modules, and endo-trivial modules.
DOI : 10.4171/jems/452
Classification : 14-XX, 00-XX, 16-XX
Keywords: Jordan type, Auslander–Reiten components
@article{JEMS_2014_16_5_a2,
     author = {Rolf Farnsteiner},
     title = {Jordan types for indecomposable modules of finite group schemes},
     journal = {Journal of the European Mathematical Society},
     pages = {925--989},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2014},
     doi = {10.4171/jems/452},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/452/}
}
TY  - JOUR
AU  - Rolf Farnsteiner
TI  - Jordan types for indecomposable modules of finite group schemes
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 925
EP  - 989
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/452/
DO  - 10.4171/jems/452
ID  - JEMS_2014_16_5_a2
ER  - 
%0 Journal Article
%A Rolf Farnsteiner
%T Jordan types for indecomposable modules of finite group schemes
%J Journal of the European Mathematical Society
%D 2014
%P 925-989
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/452/
%R 10.4171/jems/452
%F JEMS_2014_16_5_a2
Rolf Farnsteiner. Jordan types for indecomposable modules of finite group schemes. Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 925-989. doi : 10.4171/jems/452. http://geodesic.mathdoc.fr/articles/10.4171/jems/452/

Cité par Sources :