Jordan types for indecomposable modules of finite group schemes
Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 925-989
Cet article a éte moissonné depuis la source EMS Press
In this article we study the interplay between algebro-geometric notions related to π-points and structural features of the stable Auslander-Reiten quiver of a finite group scheme. We show that π-points give rise to a number of new invariants of the AR-quiver on one hand, and exploit combinatorial properties of AR-components to obtain information on π-points on the other. Special attention is given to components containing Carlson modules, constantly supported modules, and endo-trivial modules.
Classification :
14-XX, 00-XX, 16-XX
Keywords: Jordan type, Auslander–Reiten components
Keywords: Jordan type, Auslander–Reiten components
@article{JEMS_2014_16_5_a2,
author = {Rolf Farnsteiner},
title = {Jordan types for indecomposable modules of finite group schemes},
journal = {Journal of the European Mathematical Society},
pages = {925--989},
year = {2014},
volume = {16},
number = {5},
doi = {10.4171/jems/452},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/452/}
}
TY - JOUR AU - Rolf Farnsteiner TI - Jordan types for indecomposable modules of finite group schemes JO - Journal of the European Mathematical Society PY - 2014 SP - 925 EP - 989 VL - 16 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/452/ DO - 10.4171/jems/452 ID - JEMS_2014_16_5_a2 ER -
Rolf Farnsteiner. Jordan types for indecomposable modules of finite group schemes. Journal of the European Mathematical Society, Tome 16 (2014) no. 5, pp. 925-989. doi: 10.4171/jems/452
Cité par Sources :