On the singular values of random matrices
Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 823-834.

Voir la notice de l'article provenant de la source EMS Press

We present an approach that allows one to bound the largest and smallest singular values of an N×n random matrix with iid rows, distributed according to a measure on Rn that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp​ for some p>8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±cn/N​ not only in the case of the above mentioned measure, but also when the measure is log-concave or when it a product measure of iid random variables with "heavy tails".
DOI : 10.4171/jems/448
Classification : 60-XX, 00-XX
Keywords: Singular values, random matrices, heavy tails
@article{JEMS_2014_16_4_a6,
     author = {Shahar Mendelson and Grigoris Paouris},
     title = {On the singular values of random matrices},
     journal = {Journal of the European Mathematical Society},
     pages = {823--834},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     doi = {10.4171/jems/448},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/448/}
}
TY  - JOUR
AU  - Shahar Mendelson
AU  - Grigoris Paouris
TI  - On the singular values of random matrices
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 823
EP  - 834
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/448/
DO  - 10.4171/jems/448
ID  - JEMS_2014_16_4_a6
ER  - 
%0 Journal Article
%A Shahar Mendelson
%A Grigoris Paouris
%T On the singular values of random matrices
%J Journal of the European Mathematical Society
%D 2014
%P 823-834
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/448/
%R 10.4171/jems/448
%F JEMS_2014_16_4_a6
Shahar Mendelson; Grigoris Paouris. On the singular values of random matrices. Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 823-834. doi : 10.4171/jems/448. http://geodesic.mathdoc.fr/articles/10.4171/jems/448/

Cité par Sources :