On the singular values of random matrices
Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 823-834
Voir la notice de l'article provenant de la source EMS Press
We present an approach that allows one to bound the largest and smallest singular values of an N×n random matrix with iid rows, distributed according to a measure on Rn that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp for some p>8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±cn/N not only in the case of the above mentioned measure, but also when the measure is log-concave or when it a product measure of iid random variables with "heavy tails".
Classification :
60-XX, 00-XX
Keywords: Singular values, random matrices, heavy tails
Keywords: Singular values, random matrices, heavy tails
@article{JEMS_2014_16_4_a6,
author = {Shahar Mendelson and Grigoris Paouris},
title = {On the singular values of random matrices},
journal = {Journal of the European Mathematical Society},
pages = {823--834},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2014},
doi = {10.4171/jems/448},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/448/}
}
TY - JOUR AU - Shahar Mendelson AU - Grigoris Paouris TI - On the singular values of random matrices JO - Journal of the European Mathematical Society PY - 2014 SP - 823 EP - 834 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/448/ DO - 10.4171/jems/448 ID - JEMS_2014_16_4_a6 ER -
Shahar Mendelson; Grigoris Paouris. On the singular values of random matrices. Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 823-834. doi: 10.4171/jems/448
Cité par Sources :