A subelliptic Bourgain–Brezis inequality
Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 649-693.

Voir la notice de l'article provenant de la source EMS Press

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space NL ̇1,Q by L∞ functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for ∂ˉb​ on the Heisenberg group Hn.
DOI : 10.4171/jems/443
Classification : 35-XX, 00-XX, 42-XX
Keywords: Div-curl, compensation phenomena, critical Sobolev embedding, homogeneous groups
@article{JEMS_2014_16_4_a1,
     author = {Yi Wang and Po-Lam Yung},
     title = {A subelliptic {Bourgain{\textendash}Brezis} inequality},
     journal = {Journal of the European Mathematical Society},
     pages = {649--693},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     doi = {10.4171/jems/443},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/443/}
}
TY  - JOUR
AU  - Yi Wang
AU  - Po-Lam Yung
TI  - A subelliptic Bourgain–Brezis inequality
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 649
EP  - 693
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/443/
DO  - 10.4171/jems/443
ID  - JEMS_2014_16_4_a1
ER  - 
%0 Journal Article
%A Yi Wang
%A Po-Lam Yung
%T A subelliptic Bourgain–Brezis inequality
%J Journal of the European Mathematical Society
%D 2014
%P 649-693
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/443/
%R 10.4171/jems/443
%F JEMS_2014_16_4_a1
Yi Wang; Po-Lam Yung. A subelliptic Bourgain–Brezis inequality. Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 649-693. doi : 10.4171/jems/443. http://geodesic.mathdoc.fr/articles/10.4171/jems/443/

Cité par Sources :