A subelliptic Bourgain–Brezis inequality
Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 649-693
Voir la notice de l'article provenant de la source EMS Press
We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space NL ̇1,Q by L∞ functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for ∂ˉb on the Heisenberg group Hn.
Classification :
35-XX, 00-XX, 42-XX
Keywords: Div-curl, compensation phenomena, critical Sobolev embedding, homogeneous groups
Keywords: Div-curl, compensation phenomena, critical Sobolev embedding, homogeneous groups
@article{JEMS_2014_16_4_a1,
author = {Yi Wang and Po-Lam Yung},
title = {A subelliptic {Bourgain{\textendash}Brezis} inequality},
journal = {Journal of the European Mathematical Society},
pages = {649--693},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2014},
doi = {10.4171/jems/443},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/443/}
}
TY - JOUR AU - Yi Wang AU - Po-Lam Yung TI - A subelliptic Bourgain–Brezis inequality JO - Journal of the European Mathematical Society PY - 2014 SP - 649 EP - 693 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/443/ DO - 10.4171/jems/443 ID - JEMS_2014_16_4_a1 ER -
Yi Wang; Po-Lam Yung. A subelliptic Bourgain–Brezis inequality. Journal of the European Mathematical Society, Tome 16 (2014) no. 4, pp. 649-693. doi: 10.4171/jems/443
Cité par Sources :